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Hopf-Rinow theorem of sub-Finslerian geometry

Layth M. Alabdulsada
(Dep. of Math., College of Science, University of Al-Qadisiyah, Al-Qadisiyah, 58001, Iraq)
E-mail: layth.muhsin@qu.edu.iq

Laszlo Kozma
(Inst. of Math., University of Debrecen, H-4002 Debrecen, P.O. Box 400, Hungary)
E-mail: kozma@unideb.hu

The sub-Finslerian geometry means that the metric F' is defined only on a given subbundle
of the tangent bundle, called a horizontal bundle. In the paper, a version of the Hopf-
Rinow theorem is proved in the case of sub-Finslerian manifolds, which relates the properties
of completeness, geodesically completeness, and compactness. The sub-Finsler bundle, the
exponential map and the Legendre transformation are deeply involved in this investigation.

We construct a sub-Finsler bundle, which plays a major role in the formalization of the sub-
Hamiltonian in sub-Finsler geometry. Moreover, the sub-Finsler bundle allows an orthonormal
frame for the sub-Finsler structure. We introduce the notion of an exponential map in sub-
Finsler geometry. At the end, our main theorem is stated and proved.

Theorem 1. Let (M, D, F) be any connected sub-Finsler manifold, where D is bracket gen-
erating distribution. The following conditions are equivalent:

(i) The metric space (M,d) is forward complete.
(ii) The sub-Finsler manifold (M, D, F) is forward geodesically complete.
(iii) Qf = DX, additionally, the exponential map is onto if there are no strictly abnormal
MINIMIZETS.
(iv) Ewvery closed and forward bounded subset of (M,d) is compact.

Furthermore, for any x,y € M there exists a minimizing geodesic v joining x to y, i.e. the
length of this geodesic is equal to the distance between these points.
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Geometric properties of interception curves

Yagub Aliyev
(School of IT and Engineering, ADA University, Ahmadbey Aghaoglu str. 61, Baku
AZ1008, Azerbaijan)
E-mail: yaliyev@ada.edu.az

In this study, a plane curve, which was named as Interception Curve, was discussed. This
curve can be defined in the following way. Suppose one point moves with constant velocity
along a straight line, and another point, at the beginning one unit apart from the line and the
first point on this line, moves with the same constant speed so that it always stays on a line
passing through the first point and the initial position of the second point. This plane curve
appears in problems related to the interception of high-speed targets by beam rider missiles
(hence the name Interception Curve) |2, 5. This curve was also mentioned in [4, 6, 1|. In
[3], at Sect. 1.460 and Sect. 1.507), some methods based on polar and Cartesian coordinates
were proposed to find an explicit representation for this curve.

Problem 1. If two points P(x,y) and @, initially at O(0,0) and A(1,0), respectively, move
uniformly so that ) is on the line x = 1, and P is on the ray OQ then what curve does the
point P draw?

Answer. Let us use polar coordinates r = |OP| and ZAOQ = 6. We obtain ordniary
differential equation

1
0 2 / 6 2 _ 1
0P+ (10 = (1)
with initial condition 7(0) = 0. Note that in the cartesian coordinates, (1) can be written as
v+ (Y (2) =z —y, (2)

with initial eondition y(0) = 0. By solving this equation, we obtain the parametrization (cf.
[3], Sect. 1.507, where the roles of x and y are interchanged)

_ 1 [P _/tdt
l‘(p) - ﬁfl WiE—1’ (3)
2_1 2
u) = VI s - () 0=,

Using all these, the following results are obtained:

Theorem 2. Suppose that U is the y intercept of the tangent line of the curve (3) at the
point P, and this tangent line intersects the line x = 1 at point and T'. Then
1)z |UP| = |OU],

: $2 X
(2) SllePT = W = m;

where x is the abscissa of the point P(x,y).
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Theorem 3. Consider intersection point M of mid-perpendicular of OP and the line perpen-
dicular to UT at the point P. Similarly, conside intersection point N of mid-perpendicular
of OQ and the line perpendicular to QT at the point Q. Then the points M and N are
equidistant from the point O i.e. MO=NO.

The following result shows that there is a connection between the interception curve and

Gauss’s constant G defined by the arithmetic—geometric mean.
Theorem 4. 1

lim |PQ| = —.

Jm 1PQI= 3
Problem 5. Suppose that two points P and @), at the beginning at B(0,0,1) and A(1,0,0),
respectively, move uniformly so that @ is on the equator z = 0, 2% + y*> = 1 of sphere
2?2 + y* + 22 = 1 with center O(0,0,0), and P is on the meridian through B and @ of the
sphere. What curve does the point P draw?

Answer. We can use spherical coordinates to describe this curve: ZAOQ@ = 6 and LPOB =
¢. Since p = |OP| = 1, for the coordinates of point P(z,¥,2), we can write & = ¢os sin ¢,
y = sinfsin ¢, and z = cos ¢, where we think of ¢ = ¢() as a function of #. For this curve
we obtain

¢ = tan"' sinh 6. (4)
Note that (4), which can also be expressed as sin ¢ = tanh#, is sometimes called Guderman-
nian function gd(z). For the curve defined by (4) the following results are obtained.

Theorem 6. limy_,,, |[PQ| = 0.

In the following, we will use notation XY for the spherical distance between points X and
Y on a sphere.Of course, for a unit sphere with center O, XY = ZXOY.

Theorem 7. If a great circle is tangent to the curve (4) at point P, intersects the equator
at point T', then

(1) PT =T —TQ;
(2) TQ < PT, ancil\imeﬁoof@ — limy_,., PT = 3
(3) Z/BPT = 7— BP.

Theorem 8. If a small spherical circle through point B is tangent to the curve (4) at point
P, thenits spherical radius R satisfies tan R = %Sec2 %BP.

We can prove some of these results also using simpler plane and spherical geometry meth-
ods, which are interesting on their own. It can be shown that the results agree with the
angle-preserving property of Mercator and Stereographic projections. The Mercator and
Stereographic projections also reveal the symmetry of this curve with respect to Spherical
and Liogarithmic Spirals.
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Planar and non-planar degenerations with related
fundamental groups

Meirav Amram
(SCE)

FE-mail: meiravt@sce.ac.il

We study planar and non-planar degenerations that are related to-algebraic surfaces. It
is interesting to see the differences in results and research methods between both cases. We
have studied already planar degenerations with an Ry singularity, non-planar degenerations
of degree 4, 6, and 8. The fundamental groups of the Galois covers of the related surfaces
were investigated, because those groups are invariants of classification of algebraic surfaces
in the moduli space.

Theorem 1. The fundamental groups of surfaces that degenerate to one Ry singularity are
all trivial, for any k.

FIGURE 1.1. Ry singularity

Theorem 2. The fundamental groups of Galois covers related to non-planar degenerations
are trivial (for-a degree } degeneration), Zj (for a degree 6 degeneration), and a metabelian
group of order 2% (for a degree 8 degeneration,).

FIGURE 2.2. Degree 4 non-planar degeneration
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FIGURE 2.3. Degree 6 non-planar degeneration
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FIGURE 2.4. Degree 8 non-planar degeneration
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Surfaces with zero mean curvature vector in
4-dimensional spaces

Naoya Ando
(Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami,
Kumamoto 860-8555 Japan)
E-mail: andonaoya@kumamoto-u.ac. jp

Let (N, h) be an oriented Riemannian 4-manifold. Let A\*TN be the 2-fold exterior power
of the tangent bundle TN of N. Then A*TN is a vector bundle of rank 6 over N and
Hodge’s -operator gives a bundle decomposition A> TN = /\iTN & A2 TN by two subbundles
/\QiTN of rank 3. The twistor spaces associated with N are the sphere bundles in /\iTN

and denoted by U (/\iTN ) We can refer to [5] for twistor spaces. Let M be a Riemann
surface and F' : M — N a conformal and minimal immersion. Let F*I'N be the pull-back
bundle on M by F. Then F' gives its twistor lifts, which are sections of U (/\iF TN ) Let
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o be the second fundamental form of F. Let w be a local complex coordinate of M and
set Oy = 0(0/0w,d/Ow). Then h(Tuuw, Tww)dw? does not depend on the choice of w and
therefore F' gives a complex quartic differential () on M. If N is a 4-dimensional space form,
then @ is holomorphic. Isotropicity of F'is given by () = 0 and this condition is equivalent
to horizontality of a twistor lift of F' ([6], [4]).

Let (N,h) be an oriented neutral 4-manifold. Then the metric & of A*TN induced by h
has signature (2,4). We have a bundle decomposition \*TN = /\iTN @ A2TN, and the

restriction of & on each of /\ft TN has signature (1,2). The space-like (or hyperbolic) twistor
spaces associated with N are fiber bundles in /\iTN such that fibers are hyperboloids of

two sheets, and denoted by U, (/\QiT N). We can refer to [3] for space-like twistor spaces.
Let M be a Riemann surface and F : M — N a space-like and conformal immersion with
zero mean curvature vector. Then F' gives its space-like twistor lifts, which are sections of
U, ( /\QiF*TN ) Let @ be a complex quartic differential on M defined by F as in the previous
paragraph. Then isotropicity of F' is given by () = 0, which is equivalent to horizontality of
a space-like twistor lift of I ([1]).

Let (N, h) be as in the previous paragraph. The time-like twistor spaces associated with
N are fiber bundles in /\iTN such that fibers are hyperboloids of one sheet, and denoted

by U_ (/\iTN ). We can refer to [7], [8] for time-like twistor spaces. Let M be a Lorentz
surface, which is an analogue of a Riemann surface and a two-dimensional manifold equipped
with a holomorphic system of paracomplex coordinate neighborhoods. Let FF : M — N
be a time-like and conformal immersion with zero mean curvature vector. Then F' gives its
time-like twistor lifts ©p 1, which are sections of U_ (/\iF TN ) Let @ be a paracomplex
quartic differential on M defined by F. Then isotropicity of F is given by ¢ = 0. If one of
©p+ is horizontal, then @@ = 0 (|1]), while Q = 0 does not necessarily mean the horizontality
of Op : it is possible that although F' is isotropic, the covariant derivatives of O are not
zero but light-like. The covariant derivatives of O+ are light-like or zero if and only if one
of the following holds: (a) the shape operator of a light-like normal vector field vanishes and
then ) vanishes; (b) the shape operator of any normal vector field is light-like or zero, and
then @ is null or zero ([2]). The conformal Gauss maps of time-like surfaces of Willmore type
in 3-dimensional Lorentzian space forms with zero holomorphic quartic differential satisfy
Condition (a) ([1]). If N is a 4-dimensional neutral space form, then we can characterize
surfaces with Condition (b), based on the Gauss-Codazzi-Ricci equations ([2]).
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Dynamics in nilpotent groups and deformations of
locally symmetric rank one manifolds

Boris Apanasov
(Univ. of Oklahoma at Norman, USA)
E-mail: apanasov@ou.edu

We create some analogue of the Sierpiniski carpet for nilpotent geometry on horospheres
in symmetric rank one negatively curved spaces Hy over division algebras F # R, i.e over
complex C, quaternionic H, or octonionic/Cayley numbers Q. The original Sierpinski carpet
in the plane was described by Wactaw Sierpiniski in 1916 as a fractal generalizing the Cantor
set.

Deforming such a Sierpinski carpet with a positive Lebesgue measure at the sphere at
infinity OHg by its "stretching” compatible with nilpotent geometry, we construct a non-
rigid discrete F-hyperbolic groups G C Isom Hf whose limit set A(G) is the whole sphere
at infinity 0Hg. This answers questions by G.D.Mostow [6], L.Bers [4] and S.L.Krushkal [5]
about uniqueness of a conformal or CR structure on the sphere at infinity OHg compatible
with the action of a discrete isometry group G C Isom Hp.

Previously, for the real hyperbolic spaces, this problem was solved by Apanasov [1, 2].
Due to D. Sullivan [7] rigidity theorem generalized by Apanasov [2| and [3|, Theorem 5.19,
the complement of the constructed class of discrete groups G' C Isom Hf (having a positive
Lebesgue measure of the set of vertices of its fundamental polyhedra at infinity) whose limit
set A(G) is the whole sphere at infinity dH} consists of groups rigid in the sense of Mostow.
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Characterizing Linear Mappings Through Unital
Algebra

Mehsin Jabel Atteya
(Al-Mustansiriyah University, College of Education, Department of Mathematics, Baghdad,
Iraq)
E-mail: mehsinatteya88@gmail.com

In this paper, we characterize two linear mappings satisfying
r,y€Ajzoy" =0=0=0(x)oy" +zo7(y)"

for all =,y € A, where A be an algebra over a real or complex field K from a unital algebra
into its unital bimodule. The structure of linear mappings behaving like Jordan derivations
at commutative zero products has been studied extensively. We refer the reader to [1] and
[2] for more details.

As is well known, the problem of linear mappings preserving fixed products is a very inter-
esting item in the field of operator algebra. Derivations.that can be completely determined
by the local action on some subsets of algebra have attracted attention of many researchers.
Historically, the study of derivation was initiated during the 1950s and 1960s. Derivations of
rings got a tremendous development in 1957, when [3] established two very striking results
in the case of prime rings.

We denote by F'(A) the subalgebra of A generated by all idempotents in A. Let A be an
algebra. An A-bimodule M is said to have the property o, if there'is an ideal J C F(A) of A
such that {m € M : xmx = 0 for every € J} = 0.

Theorem 1. Let A be a unital algebra and M be a unital A-bimodule with the property <.
Suppose that § is a linear mapping from A into M satisfying

z,y€ Ajzoy=0=40(x)oy—xz0d(y)=0
and each element of A has a weak inverse. Then A has zero ideal.

Theorem 2. Let A be a unital algebra and M be a unital A-bimodule with the property <.
Suppose thatd and T are linear mappings from A into M satisfying x,y € A,xoy =0 =
dz)oy+axor(y) =0 and [A,(6 —7)] = 0. Then there exists a Jordan derivation /\ from A
into M such that A\(x) =0 for every x in A.

Corollary 3. Let A be a unital x-algebra and M be a unital x-A-bimodule with the property
oi If 6 and T are linear mappings from A into M satisfying

r,y€ Azoy " =0=d(x)oy +xo7(y) =0,
and A is a separating point of M. Then there exist Jordan derivations /A and I' from A into

M and §(A) = 0.
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Edge resolvability and topological characteristics of
zero-divisor graphs

Sahil Sharma
(School of Mathematics, Shri Mata Vaishno Devi University, Katra - 182320, India)
E-mail: sahilsharma2634Qgmail.com

Vijay Kumar Bhat*
(Presenting Author)
(School of Mathematics, Shri Mata Vaishno Devi University, Katra - 182320, India)
E-mail: vijaykumarbhat2000@yahoo. com

Definition 1. (Zero- Divisor Graph) Zero-divisor graph is a geometric representation of a
commutative ring. Zero-divisor graph of ring R is.denoted by I'(R) = (V(I"), E(I")), defined
by a graph whose vertices are all elements of the zero-divisorset of a ring R, and two distinct
vertices z; and zy are adjacent if and only if z7.20 = 0.

Definition 2. (Metric Dimension) Let G = (V(G), F(G)) be a graph, and S C V(G) be
an ordered subset of the principal nodes set, defined as s = {8y, Ny, N3, ..., ¥ }. Let X be
any principal node in V(G). The identification of a principal node Y with respect to S is a
k-ordered distance set (d(X,®;),d(R, Np), ..., d(R,Ry)). If each principal node for V(G) has a
unique identification according to ordered subset S, then this subset is called resolving set of

graph GG. The minimum number of elements in the subset S is called the metric dimension
of G.

Definition 3. [1] (Edge Metric Dimension) If in a simple and connected graph G, the distinct
edges of GG have distinct representation with respect to an ordered subset R of vertices of G,
then S is known as edge resolving set of G. The minimal edge resolving set of G is called
edge metric basis, and its cardinality is called edge metric dimension of G. The edge metric
dimension of graph G is denoted by edim/(G).

These are some important findings

Theorem 4. [2| For a graph G, we have

1, iff G = P,, (Path graph)
edim(G) — n—1, iff G=K,, (Complete graph)
) 2, if G = C,, (Cycle graph)

n—2, if G= Ky, (except K1), or a bipartite graph
Theorem 5. (3| The diameter of I'(R) < 3, where R is a commutative ring.

Theorem 6. The edge metric dimension of the zero-divisor graph of R is finite iff R s finite,
where R — {0} is a commutative ring but not an integral domain.
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Theorem 7. For the ring Z,,, where m > 1, we have

undefined, if m =p is a prime

edim (IN(Zy,)) = {

p—2, if m = p?and p > 2
Theorem 8. Consider the ring Z.,, where m > 1, we have

undefined, if m = 2p, where p is an even prime

edim (IN(Zy,)) = {

D — 2, if m = 2p, where p is an odd prime
Theorem 9. Consider the ring Z,,[i], where p is a prime then

edim (P(Z i) = {;m e

Theorem 10. Consider the ring Z,|i], where p is a prime. If p = m(mod 4) then

2p — 4, ifm=1
edim (I'(Zyi])) = § undefined, if m=2
unde fined, if m=3

Theorem 11. Consider the ring Z,[i|, then Zagreb first index (M)

Y ifm=2
My (T(Zn[i])) = {(p2 —2)%(p? —1), if m = p*where p is a prime

Theorem 12. Consider the ring Z,[i], where p is a prime. If p = m(mod 4) then

2p—2)(p-1)% ifm=1
Mi(T(Z,[1])) = < undefined, if m=2
0, ifm=23

Remark 13. This article examines the edge metric dimension and topological nature of
['(R). We have looked closely at edge metric dimension of integers modulo m, and Gaussian
integers modulo m. We also discovered the first Zagreb index, second Zagreb index, and
Sombor index of the zero divisor graph of the Gaussian integers modulo m. These findings
are helpful for researching the structural characteristics of rings and chemical compounds.
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From minimality to maximality via metric reflection

Viktoriia Bilet
(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine)
E-mail: viktoriiabilet@gmail.com

Oleksiy Dovgoshey
(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine; Department of
Mathematics and Statistics, University of Turku, Finland)
E-mail: oleksiy.dovgoshey@gmail.com

In 1934 Puro Kurepa [4] introduced the pseudometric spaces which, unlike metric spaces,
allow the zero distance between different points.

Definition 1. Let X be a set and let d: X? — R be a non-negative, symmetric function such
that d(z,z) = 0 for every x € X. The function d is a pseudometric on X if it satisfies the
triangle inequality.

If d is a pseudometric on X, we say that (X, d) is a pseudometric space.

Definition 2 ([3]). Let (X, d) and (Y, p) be pseudometric spaces. The spaces (X, d) and (Y, p)
are combinatorially similar if there exist bijections ¥: Y — X and f: d(X?) — p(Y?) such
that p(z,y) = f(d(¥(z),¥(y))) for all z, y € Y. In this case, we will say that U: Y — X is a
combinatorial similarity and that (X, d) and (Y, p) are combinatorially similar pseudometric
spaces.

Definition 3. Let (X,d) be a pseudometric space.” A bijection f : X — X is a pseu-
doidentity if the equality d(z, f(x)) = 0 holds for every @ € X.

The groups of all combinatorial self-similarities and all pseudoidentities of a pseudomet-
ric space (X,d) will be denoted by Cs(X,d) and PI(X, d) respectively. Thus, for every
pseudometric space (X, d) we have PI(X,d) € Cs(X,d) C Sym(X), where Sym(X) is the
symmetric group of all permutations of the set X.

For every nonempty pseudometric space (X, d), we define a binary relation o) on X by

(x

Proposition 4. Let X be a nonempty set and let d: X?> — R be a pseudometric on X. Then

L ) & (dz,y)=0), forallz,yeX.

d
) is an equivalence relation on X and, in addition, the function dg,

dale, B) = d(z,y), zcacX/ yepex/?

1 a correctly defined metric on the quotient set X/O(:d).

In what follows we will say that the metric space (X/ O(Zd),éd) is the metric reflection of
(X, d).
Let us define a class ZP of pseudometric spaces as follows.

Definition 5. A pseudometric space (X, d) belongs ZP if the equalities

Cs(X,d) = PI(X,d) and Cs(X/"?,5,) =Sym(X/"?) hold.



13

Our main goal is to describe the structure of pseudometric spaces belonging to ZP. To do
this, we introduce into consideration pseudometric generalizations of some well-known classes
of metric spaces.

Let (X,d) be a metric space. Recall that the metric d is said to be strongly rigid if, for
all z, y, u, v € X, the condition d(z,y) = d(u,v) # 0 implies (x = v and y = v) or (x =
v and y = u). The discrete metric d on X is defined by d(z,y) = k, if x # y and d(z,y) = 0,
if x =y for any x,y € X and arbitrary fixed k& > 0.

Definition 6. Let (X, d) be a pseudometric space. Then d is discrete (strongly rigid) if all
metric subspaces of (X, d) are discrete (strongly rigid).

Definition 7. A pseudometric space (X,d) is a pseudorectangle if all three-point metric
subspaces of (X, d) are strongly rigid and isometric and, in addition, there is a four-point
metric subspace Y of (X, d) such that for every x € X we can find y € ¥ satisfying d(z,y) = 0.

Let X be a nonempty set and P = {X,: j € J} be a set of nonempty subsets of X. The
set P is a partition of X with the blocks X;, j € J, if Uje; Xj = X and X, NX;, = & for all
distinct 71, jo € J.

Now we are ready to characterize the pseudometric spaces satisfying equality

Cs(X/ O(——d), dq) = Sym(X/ 0(:d)) (see [1] for more details).
The following theorem is, in fact, a pseudometric modification of the main result of [2].

Theorem 8. Let (X,d) be a nonempty pseudometric space. Then the following statements
are equivalent:
(1) At least one of the following conditions has been fulfilled:
(11) (X,d) is strongly rigid;
(i2) (X,d) is discrete;
(i3) (X d) is a pseudorectangle.
(i) The equality

0(d)

Cs(x/ Y 5,) = sym(x/ ")

holds.
The next theorem can be considered as one of the main results of our work.

Theorem 9. Let (X, d) be a nonempty pseudometrzc space and let {X; : j € J} be a partition
of X corresponding the equivalence relation @ . Then (X,d) € ZP if and only if

| j1| 7é | j2|
holds whenever j1, jo € J are distinct and, in addition, at least one of the following conditions
has been fulfilled:
(i) (X,d) is strongly rigid;
(11) (X, d) is discrete;
(i7i) (X,d) is a pseudorectangle.
Funding. Viktoriia Bilet was partially supported by the Grant EFDS-FL2-08 of the found

The European Federation of Academies of Sciences and Humanities (ALLEA). Oleksiy Dov-
goshey was supported by Finnish Society of Sciences and Letters.
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Thurston norm_and Euler classes of bounded mean
curvature foliations on hyperbolic 3-Manifolds

Dmitry V. Bolotov
(B. Verkin Institute for Low Temperature Physics and Engineering of the National
Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine)
E-mail: bolotov@ilt.kharkov.ua

Let M be a closed, oriented 3-manifold, and suppose that M contains no non-separating 2
- spheres or tori. For example, M is a closed oriented hyperbolic 3-Manifold.
The Thurston norm on Hy(M,Z) is defined as follows ([1]):

l|la||7n = inf{x_(X)| ¥ is an embedded oriented surface representing a € Hy(M,Z)}, (1)

where x_(3) = maz{—x(X),0}. Recall that y(X) = 2 —2g denotes the Euler characteristic of
a surface 3 of genus g. When ¥ is not connected, define y_(X) to be the sum y_(X;) +---+
X—(2k), where ;, i = 1,...,k are the connected components of ¥. As Thurston showed, the
Thurston norm can be extended in a unique way to the norm in Hy(M, R).

The dual Thurston norm can be defined on H?(M,R) by the formula

. < a,[X] >
o, = Supgres ™2, (2)
where o € H*(M,R) and the supremum being taken over all connected, oriented surfaces ¥
embedded in M whose genus g is at least 2.

Recall that a taut foliation is a codimension one foliation of a closed manifold with the
property that every leaf meets a transverse circle. Equivalently, by a result of Dennis Sullivan
[2], a codimension one foliation is taut if there exists a Riemannian metric that makes each
leaf a minimal surface. Thurston proved that the convex hull of the Euler classes of taut
foliations on M is the unit ball for the dual Thurston norm. In particular, the Thurston
norm ||e(F)|[%;, of the Euler class e(F) € H*(M,R) of a taut foliation F is no more then one.

We represent the following result.

Theorem 1. Let M be a closed oriented hyperbolic 3-Manifold and F be a two-dimensional
transversely oriented foliation F whose leaves have the modulus of mean curvature bounded
above by the fized positive constant Hy. Then

— If Hy'< 1, we have F is taut and ||e(F)||5, = 1.

~ If Hy > 1, we have

1600H3V ol (M)* | 300V ol(31)
Coinj(M) inj(M)

le(F)ll7n < 2m +1,
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where Cy = 2min{inj(M), (coth) ™ (Hy)}, Vol(M) is the volume of M and inj(M) is
the injectivity radius of M.
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Nijenhuis geometry and its applications

Alexey Bolsinov
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This presentation is focused on some results of the long-term research programme Nijenhuis
Geometry initiated several years ago in cooperation with Vladimir Matveev and Andrey
Konyaev.

A Nijenhuis operator L :(L;(:c)) is defined to be a field of endomorphisms on a smooth
manifold M such that its Nijenhuis torsion identically vanishes, i.e.,

for arbitrary vector fields £, on M. The pair (M, L) is called a Nijenhuis manifold.

Relation (1) is the simplest differential-geometric condition on a field of endomorphisms,
and that is the reason why Nijenhuis operators appear in many areas of differential geometry
and mathematical physics. In the theory of integrable bi-Hamiltonian systems, they serve as
recursion operators and their role in this area has been well understood for many years due
to pioneering works by F. Magri, Y. Kosmann-Schwarzbach and F. Turiel. A classical fact in
complex geometry is that an almost complex structure is integrable if and only if it is Nijen-
huis (Newlander—Nireberg theorem). In the context of metric projective geometry, Nijenhuis
operators played a crucial role in various classification problems (AB and V. Matveev). They
naturally occur in‘the study of infinite dimensional Poisson brackets of hydrodynamic type
(E. Ferapontov et al). Even in algebra, Nijenhuis operators turns out to be useful in the
theory of integrable systems on Lie algebras and Lie pencils (A. Panasyuk), and also appear
as left symmetric algebras.

Besides various applications, our motivation is as follows. Classical geometries are defined
by means of a tensor of order 2. For Riemannian, sub-Riemannian, symplectic and Poisson
structures, this tensor is a bilinear form (co- or contravariant, symmetric or skew-symmetric).
In this list, one type of tensors is still missing: linear operators. Nijenhuis geometry would
be a very natural candidate to fill this gap.

Thus, Nijenhuis Geometry research programme is aimed at systematic development of the
theory of Nijenhuis manifolds. Our vision and first results are presented in [1-8|. More
specifically, our goal is to re-direct the research agenda in this area from temsor analysis
at generic points to studying singularities and global properties. The ultimate goal of our
research programme is to answer three fundamental questions:

(A) Local description: to what form can one bring a Nijenhuis operator near almost every
point by a local coordinate change?
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(B) Singular points: what does it mean for a point to be generic or singular in the context
of Nijenhuis geometry? What singularities are non-degenerate/stable? How do Nijenhuis
operators behave near non-degenerate and stable singular points?

(C) Global properties: what restrictions on a Nijenhuis operator are imposed by the topol-
ogy of the underlying manifold? And conversely, what are topological obstructions to a
Nijenhuis manifold carrying a Nijenhuis operator with specific properties?

Below are some of our easy-to-formulate results in the area.

Theorem 1. Let L be a Nijenhuis operator and oy, ...,0, be the coefficients of its charac-
teristic polynomial x(t) = det(t - Id—L) = ¢" — >_}_, o) t"". Then in any local coordinate
system w1, ..., T, the following matriz relation hold:

J(z) L(x) = Sy(x) J(x), where S, (z) = :<) | 1 2)
g;zaz) 0 .. 0

and J(x) is the Jacobi matriz of the collection of functions oy,...,0, w.r.t.” the variables
T1yeeoy Ty

Theorem 2. Let L be a real-analytic Nijenhuis operator of the form
L(z) = Lyn(x) + R(z), ~where Lyy(x) = diag(a;, z2, ..., x,)

and R(x) denotes a non-linear perturbation (of order > 2). Then L(x) is linearisable, i.e.,
there exists a real analytic change of wariables v — y such that in the new coordinates

L(y) = diag(yb Y2, ... 7yn)-

Theorem 3. A Nijenhuis operator on a closed connected manifold cannot have non-constant
complex eigenvalues.

Theorem 4. Consider a real analytic gl-reqular Nijenhuis operator L (gl-reqularity means
that each eigenvalue of L may have arbitarary multiplicity but only one linearly independent
eigenvector). Then. there ezist local coordinate systems u = (u',...,u") and v = (vi,... v")

in which L reduces to the first and second companion forms:

o 1 0 1
L(U) Lcompl - ’ 0 and L(U) = Lcomp2 = : C c ,
On 0O ... 0 Op Op—1 ... 01

where o; are the coefficients of the characteristic polynomial of L in the corresponding coor-
dinate system.

Theorem 5. Let M? be either a sphere or a closed Riemann surface of genus > 2. Then
M? eammot carry any gl-reqular Nijenhuis operator L except for L = ald +BA, where A is a
complex structure on M? and o, 8 € R,  # 0. A non-orientable closed 2-manifold different
from a Klein bottle cannot carry any gl-reqular Nijenhuis operator.
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Shape optimization in the batch crystallization of CAM

Enzo Bonacci
(The Mathematics & Statistics Unit of ATINER, Athens, Greece)
E-mail: enzo.bonacci@physics.org

The citric acid monohydrate (CAM) is an important organic substance but, until 1997, the
scientific literature covered mostly the kinetics of nucleation [4] and the crystal growth [5]
rather than its production via the crystallization by cooling in a stirred tank reactor (STR).
The Department of Chemical Engineering at the University “La Sapienza” of Rome decided to
fill that sci-tech gap through a meticulous investigation, with three STRs at the laboratories
of San Pietro in Vincoli’s district, on the crystallization in discontinuous (batch) of CAM
from aqueous solutions. The author participated in that cutting edge experience, as experi-
menter-and coder under the supervision of Prof. Barbara Mazzarotta, in the years 1997-1998
[1]. Our specific tasks were to spot the main operating conditions, to modify them until an
optimal crystal size distribution (CSD), i.e., large-sized homogeneous crystals of CAM, and
to write a QBasic program predicting the outcomes of any test in batch reactors [2]. Here
we focus on the influence of the STRs’ geometry, i.e., the role played by the tanks in crys-
tallizing the CAM thanks to their differently shaped bottoms (flat, hemispherical, conical).
All the data, collected and simulated, show that the round-bottomed crystallizer gives the
best CSD, performing better than the conical-bottomed STR, and that we should discard
the flat-bottomed STR for the poor quality of its crystalline product [3]. The homogenous
distribution of large crystals from the round-bottomed STR is due to the optimal suspension
state that such shape provides for the dispersed phase of CAM particles [6], as confirmed by
the computational fluid-dynamics software VisiMix.
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Homotopies to Diffeomorphisms in Symplectic Field
Theory

Francisco Bulnes
(IINAMEI, Research Department in Mathematics and Engineering, TESCHA)
E-mail: francisco.bulnes@tesch.edu.mx

Homotopies between non-compact Lagrangian submanifolds are considered, and using the
Fukaya conjecture relative to the Witten deformation of higher product structures conforming
a Fukaya category W(H), from the perspective of the Floer complexes, which determine
diffeomorphisms C'_,(€,) — W(H), whose space of paths gofrom ~(z), to ¢(z), foreseen in
HW*(Lg, L1) =2 H_.(Pyy,z,)- Then the field ramification of the space C_,(€,), is a connection
obtained under the following commutative category scheme [1]:

mod(B) LN C
Y a
O.(6) € H(modf(C_.(QZ)) — H(M) M (1)
1 20z — lembb
C_.() R EY:

Note. Here W(H), represents the wrappings of the flow of geodesics, which physically
represents that happen in the dual space obtained for the product of the diffeomorphism
given in the Cech complex defined by C' = @;I'(U;)[—d], that is to say, of the “states” ¢(z),
which are connected by the paths of the cohomology of the paths in Z, from ¢(zg), to ¢(xq).
the other conjecture that must be planted is that as consequence of the derived categories
scheme(1) is:

Conjecture 1. Direction is time and translation is space in the space-time.

Keywords: Cech Complex, Diffeomorphisms, Floer Cohomology, Fukaya Category, Ho-
motopy, Lagrangian submanifolds.
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Global asymptotic stability of generalized homogeneous
dynamical systems

David Cheban
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The equivalence between uniform asymptotic stability and exponential stability for gener-
alized homogeneous non-autonomous differential equations

' = f(t,x) (1)

is established. This results we prove in the framework of general non-autonomous (cocycle)
dynamical systems.

Let R := (—o0,+00) and C(R x R" R™) be the spaee of all continuous functions f :
R x R" — R" equipped with the compact-epen topology. Denote by (C(R x R",R"),R, )
the shift dynamical system on C(R x R/ R"), i.e., a(z, ) := fTand f7(t,x) := f(t+ 7, ) for
any t,7 € R and z € R™.

Along with equation (1) we consider its H-class [4, 2, 6, 10], i.e., the family of equations

v = g(t,v), (2)

where g € H(f) :=={f"| 7 € R}, f7(t,u) = f(t +7,u) for any (t,u) € R x R" and by bar we
denote the closure in C(R x R" R™). We will suppose also that the function f is regular |9,
ChlV], i.e., for every equation (2) the conditions of existence, uniqueness and extendability
on R, are fulfilled: Denote by ¢(¢,v, g) the solution of equation (2), passing through the
point v € R™ at the initial moment ¢ = 0.

Let R™ with euclidian norm |z| := y/2? + ... + 22. Denote by

|2y = (B2l 70) 7, (3)
where r = (ry,...,1), r; > 0 forany ¢ = 1,...,n and p > 1. Denote by p(z) := |z|., and
AL = diag(e™)",.

Definition 1. A function f € C(R x R" R") is said to be:

(1) r-homogeneous (r € (0,+00)") of degree m € R |7, 11] if f(t, Alzx) = e™ALf(t,z) for
any & >0and (t,z) € R x R™;
(2) Lagrange stable [4] if the set H(f) is compact in C'(R x R" R™).

Remark 2. If the function f € C(R x R",R™) is r homogeneous of degree m > 0, then
f(t,0) =0 for any t € R.

Definition 3. The trivial solution of equation (1) is said to be:
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(1) uniformly stable, if for all positive number ¢ there exists a number § = () (0 € (0,¢))
such that |z| < § implies |p(t,z, f7)| < e for all t,7 € Ry;
(2) attracting (respectively, uniformly attracting), if there exists a positive number a
i fo(t,z, f7)| =0
for all (respectively, uniformly with respect to) |z| < a and 7 € Ry;

(3) asymptotically stable (respectively, uniformly asymptotically stable, if it is uniformly
stable and attracting (respectively, uniformly attracting).

Remark 4. 1. Note that from the results given in the works [1],[9] it follows the equivalence of
standard definition of uniform stability (respectively, global uniform asymptotically stability)
and of the one given above for the equation (1) with regular right hand side.

2. From the results of G. Sell [9] it follows that for the differential equations (1) with the
regular and Lagrange stable right hand site f the following statements are equivalent:

(1) the trivial solution of equation (1) is uniformly asymptotically stable;
(2) the trivial motion of the cocycle (R", ¢, (H(f),Ry@)) generated by (1) [4; Ch.I] is
uniformly asymptotically stable.

Theorem 5. Assume that the function [ is r homogeneous of degree zero and Lagrange
stable.
Then the following statements are equivalent:

(1) the trivial solution of equation (1).is uniformly asymptotically stable;
(2) the trivial solution of equation (1) is globally uniformly asymptotically stable;
(3) there exit positive numbers N and v such that

ple(tyu, 9) < Ne™ plu) (4)
for any u e R", g € H(f) and t >0, where p(u) = |ul, .

Remark 6. 1. If the function f is 7-periodic, then the equivalence of the conditions (ii) and
(iii) was established in the work |[8].

2. If the function f is homogeneous of degree zero (in the classical sense, i.e., f(t,ex) =
ef(t,z) for any e > 0 and (¢,#) € RXR™), then the equivalence of the uniform asymptotically
stability and exponential stability was established in the work [5, Ch.I] (for finite-dimensional
case) and in the work [3] (for infinite-dimensional case).
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Definition 1. (2, 3] A hyper-Kdhler manifold is a Riemannian manifold (M",g,F, G, H)
with three covariant constant orthogonal automorphisms F, G, H of the tangent bundle which
satisfy the quaternionic identities

F2=G?=G?=FGH = —1.

The symbol / denotes the identity tensor of type (1, 1) in the manifold. In terms of a local
coordinate system we might write:

Fhpe = st GhGe = -, H'"HY = 5", (1)
GuH! = —H!G} =F], HMF}=—-F!H}=G],  F!Gf=-GLF}=H (2
V,F] =0, VGl =0, V;H]' =0, (3)
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Obviously, the covariant derivative in (3) is compatible with the Riemannian metric g. In
this case the metric is referred to as a hyper-Kahler one.
In a hyper-Kéhler manifold, let us consider a curve z(t) satisfying differential equations:
d?z" dxt dat da" dxt dx’ dxt
TR ) B R (DG + S HN
where a(t), f(t), y(t) and §(t) are certain functions of the parameter ¢, the symbol I'l;
denotes connection compatible with the Riemannian metric g. We call such a curve a hyper-
holomorphically planar curve (HH P-curve). The H H P-curves are a generalization of holo-
morphically planar curves [1].
Suppose two hyper-Kéhler manifolds (M", g, F,G, H) and (M",g, F,G,H) are given and
the defined triple of the affinors F, G, H is the same in both manifolds.
A mapping 7 : (M", g, F,G,H) — (M",3,F,G, H) is an hyper-holomorphically projective
mapping (HH P-mapping) if any H H P-curve of (M", g, F, G, H) is mapped under 7 onto an
HH P-curve in (Mn,ﬁ, F,G, H).

Theorem 2. If two hyper-Kihler manifolds (M", g, F,G,H). and (Mg, F,GyH) are in
hyper-holomorphically projective correspondence, then their Lewvi-Civita connections related
to each other as

=h

__1h h o h o Yh o rrh
Uiy = Ui + vad5) — e FGEy) — 0aGGGh = Yo HG Hj),

where ; is some gradient vector.

Theorem 3. Let a hyper-Kdihler manifold (M", g, F, G, H) admit HH P-mappings. Then the
object

1k 1 o sh o 18 h a B h o 178 17h

Ty =15 = g Taadpy = Lasl Iy — TasGuG)) — TasHGH))
is invariant under any H HP-mapping.
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On a problem of Fejes Toth

Susanna Dann
(Universidad de los Andes, Bogota, Colombia)
E-mail: s.dann@uniandes.edu.co

Let P be any convex n-gon in the plane with sides A;,7 = 1,...,n of lengths a;. Denote
by b; the length of the longest chord parallel to the side A;. Fejes Toth conjectured that
Z?Zl Z—j > 3, with equality only for a snub triangle obtained by cutting off three congruent
triangles from the corners of a triangle. This question appears as B7 in the Unsolved Problems
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in Geometry by H. T. Croft, K. J. Falconer and R. K. Guy. We will present F. Nazarov’s
proof of T'6th’s inequality and discuss its higher-dimensional analogues.

Gottlieb groups of some Moore spaces

Marek Golasiniski
(Faculty of Mathematics and Computer Science, University of Warmia and Mazury,
Olsztyn, Poland)
E-mail: marekg@matman.uwm.edu

Thiago de Melo
(Sao Paulo State University (Unesp), Rio Claro-SP; Brazil)
E-mail: thiago.melo@unesp.br

Rodrigo Bononi
(Sao Paulo State University (Unesp), Sao José do Rio Preto—SP, Brazil)
E-mail: rodrigo.bononi@unesp.br

In this work, we present some computations of Gottlieb groups of Moore spaces M (A, n)
for some classes of finitely generated abelian groups A.

Given m > 1, recall that the m-th Gottlieb group G,,(X) of a space X has been defined in
[4, 5] as the subgroup of the homotopy group 7, (X) consisting of all elements which can be
represented by a map f: S™ — X such that fVix:S™ Vv X — X extends (up to homotopy)
toamap F': S" x X — X. Notice that o € G,,(XX) if and only if the generalized Whitehead
product [a, txx] = 0 (see [1, Proposition 5.1]).

First, we recall from [5, Theorems 5.2 and 5.4]:

Theorem 1. Let A be a finitely generated abelian group and n > 3. Then,

0, if n is even,
G (M(A,n)) = 0, if n is odd and tk(A) # 1,
’ 97 C %= m,(S"), ifn+#1,3,7is odd and A = Z,
Z = m(8"), ifn=1,3,7 and A =17

We point out that the result above has been stated also in [2] for n > 3. In addition, |2,
Corollary 4.4 claims that if n is odd, then G, (M(Z & T,n)) is infinite cyclic, where T is a
finite abelian group.

As stated in [2, Remark 4.5], it would be interesting to compute other Gottlieb groups for
some Moore spaces, such as G,,1(M(A,n)). We will do this for a finitely generated abelian
group A which its torsion subgroup has order 2 (mod 4). We notice that on |3, Chapter 3|
there are some results on G,41(M (A, n)) only for A having torsion subgroup with odd order.

Our main result is:

Theorem 2. Let A be a finite abelian group with order |A| =2 (mod 4). Then G,1(M(Z @
A;n)) =0, forn >3, and G,i2o(M(Z & A,n)) =0, forn > 4.

Furthermore, investigations of G, (M(Z® A, n)) for k = 3,4,5 and A as above, is planned
as well.
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Inner semi-continuity of medial axes and conflict sets
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A central notion in pattern recognition is that of the medial axis My of a closed, nonempty,
proper subset X C R"™. Namely, Mx consists of all those points ¢ € R"™ for which there is
more than one closest point (with respect to the Euclidean distance d(a, X)) in X:

My :={a eR" | #m(a) > 1} where m(a) :={x € R" | |la — z|| = d(a, X)}.

The definition goes back to H. Blum (cf. [3]) who gave it for X = 0D where D C R" is a
bounded domain. Then, knowing the ‘skeleton’ My N D and d(-, X)|u, (‘compressed data’)
one can reconstruct the ‘shape’ D.

The medial axis has long been known for being highly unstable (cf. e.g. [4]): the smallest
deformation of X may lead to'an important change in Mx (think of X as a circle in the
plane — My is its centre, while the same circle but now with the smallest > protuberance
yields a medial axis that is a segment). However, this point of view has a flaw — it sees the
modification as through a blackbox, there is an initial state and a final one with nothing in
between.

Our aim is to_provide the right setting for considering the deformation of X which is
the (Painlevé)-Kuratowski convergence of closed sets and to show in this case the inner-
semicontinuity of the medial axis. The most general result we have, and one that turns out
ot be optimal already in R", can be stated as follows:

Theorem 1. Let M be a connected complete Riemannian manifold and 11 a Ty topological
space of parameters with a distinguished non-isolated point 0 having a countable basis of
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neighbourhoods. We write Q1x ,, for the set of geodesics of minimal length connecting a point
in m(p) with p and vx, for such a geodesic originating at p. Assume that X C II x M has

closed t-sections and we have the Kuratowski convergence X, N Xo. Then for M = {(t,x) €
I M| Fyx,p, Vxep € Qe © Ve # VXew}s we have
liminf M; D M,

w(M)>3t—0
where the lower limit is understood in the Kuratowski sense:

z € liminf M, & Va(M)\ {0} >t, — to,IM;, > x, — .
w(M)>t—0

We will show how this applies in singularity theory in R" giving a criterion for Mx to
reach certain singularities of X when X is definable in some o-minimal structure (e.g. semi-
algebraic), cf. [2].

Finally, we will discuss a counterpart of this theorem in the case of conflict sets of finite
families of closed, pairwise disjoint sets, instead of the medial axis, cf. [1]. The conflict set of
two sets is their set of equidistant points. In case of more than two sets it can be seen as the
set of points at which the distance wavefronts emanating from the sets meet.
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The diameter-width-ratio for complete and
pseudo-complete sets

Katherina von Dichter
(Brandenburg University of Technology, Cottbus, Germany)
FE-mail: vondicht@b-tu.de

Any set A € R” fulfilling A =t — A for some ¢t € R" is called symmetric and 0-symmetric
if t = 0. We denote the family of all (convex) bodies (full-dimensional compact convex sets)
by K" and the family of 0-symmetric bodies by K. For any K € K" the gauge function
I llx : R" — R is defined as

||| x = inf{p > 0: 2z € pK}.

In case K € K we see that || - ||k defines a norm. However, even for a non-symmetric unit
ball K, one may approximate the gauge function by the norms induced from symmetrizations
of K
1z]lconviru—xy < 2llx < 2]l knx)-
It is natural to request that K N (—K) = K = conv(K U (—K)) if K is symmetric, which
is true if and only if 0 is the center of symmetry of K. This motivates the definition of a
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meaningful center for general K. We introduce one of the most common asymmetry measures,
which is best suited to our purposes, and choose the center matching it.
The Minkowski asymmetry of K (denoted by s(K)) is defined as

s(K):==inf{p>0: K —cCplc—K), ceR"},

and a Minkowski center of K is any ¢ € R” such that K — ¢ C s(K)(c — K). Moreover,if 0 is
a Minkowski center, we say K is Minkowski centered. It is well-known that s(K) € {1,n| for
all K € K", with s(K) =1 if and only if K is symmetric and s(K) = n if and only if K is a
simplex.

Notice that there always exists some x € R™ such that o(K)||z| kn—xr) = [|#|leonve-K))
which means that we have equality in the complete chain in the equality above for that x
if o(K) = 1. We investigate the region of all possible values for the parameter a(K) for
Minkowski centered K € K? in dependence of the asymmetry of K.

We show that a(K) > ﬁ for all Minkowski centered K, and that in the planar case

a(K) =1 implies s(K) < ¢, where ¢ = # ~ 1.61 denotes the golden ratio.

We give a complete description of the possible a-values of K in the planar case in depen-
dence of its Minkowski asymmetry. Moreover, we derive the (unique) family of convex bodies
that fulfill the upper bound of a(K).

K is called complete (w.r.t. C), if any proper superset of it has a greater diameter than K.

We also present an application on the diagram of the a-values of K for the diameter-width
ratio for complete and pseudo-complete sets. We extend the results on the bounds for a(K)
and describe the region of all possible values for this parameter for Minkowski centered convex
compact set K in dependence of the asymmetry of K.

Theorem 1. Let K be Minkowski centered. Then
: s(K)
< alK)< 1, ———~2—».
o1 S o <min {1, 2}

Moreover, for every pair (@;s), such that ;21 < @< min {1, 82%1}, there exists a Minkowsk:
centered K, such that s(K) =s and a(K) = «.

Consider K € K™ and C € Kj« For s € R™\ {0} the s-breadth of K w.r.t. C is the distance
between the two parallel supporting hyperplanes of K with normal vector s, i.e.,
max, yex S° (2 —y)
max,cc stae

bs(K,C) :=

The minimal s-breadth

w(K,C) = min bs(K,C)
s€mathbbR™\{0}

and the maximal s-breadth
D(K,C):= max by(K,C)

seRm\ {0}
are called width and diameter of K w.r.t. C, respectively.
We present a quantitative result on the diameter-width ratio for for complete sets.

Theorem 2. Let K,C' be convex compact sets and C' be 0-symmetric be such that K is
complete w.r.t. C. Then

D(K,C) < s(K)+1

w(K,C) — 2
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Moreover, for n > 2 even and for any s € [1,n — 1] there exists K,C € K" such that K s

complete w.r.t. C with s(K) = s, such that 3([(’0) = st “while forn > 2 odd and any s € [1,n]

(K,C) — 27
there exists K € K" which is complete w.r.t. C with s(K) = s, such that gg((g; = =1,

On the possibility of joining two pairs of points in
convex domains using paths

Dovhopiatyi Oleksandr Recall,
(Zhytomyr Ivan Franko State University)
E-mail: Alexdov1111111@gmail.com

that a set C' is convez if any pair of points z,y € C may be joined by some segment which
belongs to C, as well. We define the Euclidean distance between sets and the Euclidean
diameter by the formulae

d(A,B) = inf [r—y|, dA)= supfz—y|.

JYEDB z,y€A
Sometimes we also write dist (A, B) instead d(A;B) and diam F instead d(F), as well. As
usually, we set
B(zg,r) ={x e R" s |z — x| <1},

S(xo,r) =4z € R": |z —ao| =r}.

We emphasize that, the results established here have already been obtained in particular
case, when a domain is the unit ball [1]. Concerning some applications of modulus inequalities
in the mapping theory, see [2], cf. [3]-[4].

Theorem 1. Let D' be a bounded convex domain in R, n > 2, and let E := B(y.,0./2) be a
ball centered at the point y, € D', where 0, := d(y.,0D"). Let zo € dD'. Then for any points
A, B € B(z,0./8)N D’ there are points C, D € B(y.,0./2), for which the segments [A, C] and
[B, D] are such that

dist ([A,C1,[B,D]) > Cy - |A — B|, (1)
where Cy > 0is some constant depending only on 0. and d(D’).

Recall that, a Borel function p : R" — [0, o0 is called an admissible for a family I' of paths
~.in R™, if the relation

/ p() |do] > 1 2)

Y
holds for any locally rectifiable path v € I'. A modulus of T" is defined as follows:

M) = inf /p”(z) dm(z) . (3)

p€admT
R"l

The following statements hold.
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Corollary 2. Let, under conditions of Theorem 1, I' denotes the family of all paths joining

the segments [A,C]| and [B, D] in D’'. Then

m(D") 1
0

where M is the modulus of families of paths defined in (3), m(D') denotes the Lebesgue
measure of D', and Cy is a constant in (1).

M) <

Corollary 3. Let, under conditions of Theorem 1, I' denotes the family of all paths joining
the segments [A,C| and [B, D] in D’'. Then

30,4

M) >c,-1 1+ ——], 5
(1) > G tog (14 g3 ) 5
where M is the modulus of families of paths defined in (3), ¢, > 0 is some constant depending
only onn and D'.
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Backstrom curves

Yuriy Drozd
(Harvard University & Institute of Mathematics of the NAS of Ukraine)
E-mail: y.a.drozd@gmail.com

Recall some definitions.

Definition 1. (1) A non-commutative curve is a pair (X,.A), where X is an algeraic curve
over a field k and A is a sheaf of Ox-algebras coherent as a sheaf of Ox-modules.

(2) A non-commutative curve (X, H) is called hereditary if for every point z € X the local-
ization H, is hereditary (equivalently, gl.dim#H = 1).

(3) A non-commutative curve (X, A) is called Backstrom if there is a hereditary non-commutative
curve (X, ?H) such that H O A and rad H, = rad A, for all points = € X.

(4) The Auslander envelope of a Backstrom non-commutative curve (X, .A) is defined as the
non-commutative curve (X, A), where A = End (A H).

For instance, every (usual) algebraic curve such that all its singularities are simple nodes
is a Backstrom curve, as well as the union of the coordinate axes in the affine space of any
dimension.

We study the structure of Backstrom curves and their Auslander envelopes and prove the
following results.
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Theorem 2. Let (X, A) be a Backstrom non-commutative curve, (X, A) be its Auslander
envelope.

(1) gl.dim A < 2.
(2) der.dim A < 2, where der.dim A denotes the derived dimension of A, that is the
Rougquier dimension |2| of the perfect derived category D" (Coh A).

Local versions of these results are proved in [1].

We also study the action of finite groups on Backstréom curves and prove the following
theorem.

Theorem 3. Let a finite group of order n acts on a Backstrom curve (X;.A) and chark { n.
Then the crossed product (X, A G) is also a Backstrom curve and its Auslander envelope is

(X, A%Q).

Some examples will also be presented.
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On geodesic lines of Riemannian metric for
Navier-Stokes equations
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Theorem 1. The 14D Riemann metric in local coordinates
f: (x7y7z7t?nﬂp)m7u7v7w’p7§?x?n)
ds® = 2 dedu + 2 dydv + 2 dzdw + (W (7, t)w—V (Z, t)v—U (T, t)u) dt*+

< <—U(f, tp — u (U(Z,1)° — uP(Z,t) + wp aazU(:E, t)—wU(Z, )W (Z, t)) dn*+
d . . . . J . . )
+ (v a—yU(x, t) —=oU(Z,t)V (L, 1) + up %U(l’, t) ) dn® + 2dnd€ + 2 dpdx + 2 dmdn+

+ (—V(f, Hp— vP(T,1) — v (7,1))> — V(Z, W (Z, Dw + vy gwa, t) — (%, )V (7, t)) dp>+
+ <uu éi:\/(f, t)) dp* + <—uU(a?, W (2, t)—w (W(Z, 1)) —wP(Z,t)+wp aiW(az t)) dm®+

+ (w ;’yW(f, t) — oV (@, W (&, 1) + up aé;vv(f, t) — W(&, t)p) dm? (1)
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is the Ricci-flat,
Ruy=U,+V,+W,=0, Rs5=0, Res =0, Ri7 =0
on solutions of Navier-Stokes system of equations
0 -
ot
where Q(f, t) =[U(Z,t),V(Z,t), W(Z,t)] are the components of velocity and P(Z,t) is pressure
of liquid. (see e.qg. [1-2])

To obtain the metric (1) presentation the NS-system of equations in the form of laws
conservations

(#,t) + (@, 1) - VO, t) — nAQ(Z,t) + VP(T, 1) =0, V- Q@@ 1) =0, © (2)

Ui+ (U? = pU, + P, + (UV — pU,)y + (UW — pUy). =0
Vit (V2= pVy+ P)y+ (UV — tVi)e + (VW —pV2). =0,
Wi+ (W? = uW, + P), + (UW — uW,), + (VW = uW,), =0,
is used.

The metric (1) belongs to the class of the Riemann spaces with vanishing scalar Invariants.
Their geodesics with respect to the coordinates. ), p,m, &, x,n has form of equations direct
lines )

i1=0, p=0,m=0;,6=0, x=0,7=0,
and in this sense to them the partially-projective spaces of V.Kagan corresponds.
For the coordinates [z,y, z,t| the equations of geodesics of metric (1) are

;8295 (s)=1/2 (m(s))2 Ulx,y,z,t) W (x,y, z,t) —1/2 (m(s))QuaiW (x,y,2,t)+

+1/2 (9(5)) (U (2,9, 2, ) 12 (p)°0 (2,y,2,1) V (2,9, 2,1) —

) 0 . 0
—1/2 (p)° e (z,y,2,t) — —1/2 ()* Pl (z,y,2,t)+

+1/2U (x,y,2,t) (%t (s)> +1/2 (17(s))* P (z,y, 1),

2

L= 1727 (.2 (ad;m (5)>2 +1/2U (2,9, 21) (in(s)>2+

b2y 0 (00

d2
@y (s)="-+,
d2
@Z (S) ...,
The equations of geodesics for dual coordinates [u, v, w, p] form the linear system of the second
order equations
d2

Tuls) = Ayu(s) + Bro(s) + Cru(s) + By p(s),
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c(lis?v(S) = Azu(s) + Bov(s) + Cow(s) + Ezp(s),
;;w(s) = Asw(s) + Bsv(s) + Csw(s) + Esp(s),
C;;p(s) — Aju(s) + Byv(s) + Cyw(s) + E;p(s),

with the coefficients depending on the solutions U(z, y, z,t), V(z,y, z,t), W (z,y, z,t), P(z,y, z,t
of the system (2).
On the base of solutions of equations for the Killing vectors of the metric

Kij+ Kj; —2U5Ke =0, or K'gijp + giaK*, j + g K" i =0, (4)

a new examples of reductions and solutions of the system (2) are constructed.

Properties of the Lie derivative for the connection coefficients of the metric (1) and the
vector field of the form u’ = giv*
where Fj-k—are the coefficients of connection of the metric (1) with the aim of constructing
new examples of solutions to the system (2) are discussed.

Another possibility for studying the properties of the /NS system by the geometric method

is the use of differential Beltrami parameters of the metric (1) Ax(f) = g"j% - Ffj%c. As

example, in particular case f = ¢(z,y, 2,£0,0,0,u, v, w, p, 0,0,0), from solutions of the linear
equation with variable coefficients Ay(f) = 0 the relation

W@w—W@ﬁW@ﬁM:U@ﬂ%U@w—W@ﬁgy@ﬁ—
)

—W@ﬁmp@O—W@w8W@ﬂ+%V@ﬂW@w+aW@ﬁmﬁm

L) 0z
between velocity and pressure can be derived and that can be applied to the studying prop-

erties of solutions of the system (2).
Aknowledgement. The work is partially supported by NSF.
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On controllability problems for the heat equation in a
half-plane in the case of a pointwise control in the
Dirichlet boundary condition
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Consider the following control system in a half-plane

wy, = Aw, x1 >0, g eR, t € (0,7), (1)
w(O, (-)m,t) = 5[2]u(t), x €R, t€(0,7), (2)
w(()[1]> ()[2]70) = U}O, T > 07 HOMS R> (3)

where T > 0, u € L*(0,T) is a control, oy is the Dirac distribution with respect to x,,
m = 1,2, A = (9/0x1)? + (0/0x2)?. The subscripts [1] and [2] associate with the variable
numbers, e,g., (-)p and (+)}g correspond to x; and s, respectively.

Let R, = (0,4+00). Consider the following spaces of Sobolev type

s aa1+a2<)0
H@Z {QD S LQ(R+ X R) ’ <Va = (Oél,OZQ) € Ng <OZ1 +a; <s= W € LZ(R+ X R)))

— "p(0", ()i2))
/\(Vk—(),s—l ax,fo)}, s=10,3,

with the norm

1/2

2
, p€HgG s=0,3,
L2(Ry xR)

and Hg® = (Hf())* with the strong norm ||-|| 5" of the adjoint space. We have Hg = L*(Ry xR).

We consider control system (1)—(3) in H@l, =13 1e (L) w:[0,7] — H@lfzs, s=0,1,
w’ e H (5)1. We treat equality (2) as the value of the distribution w at z; = 0 (see the definition
of a distribution’s value at a point [1, Chap. 1] and the definition of a distribution’s value at
a line [2]).

8a1+a2(p
(o5} (65)
0x {0

EFS Iy (1

a1+az<s

Definition 1. A state v’ € H@l is said to be controllable to a target state w! € H@l in
a given time 7" > 0 if there exists a control u € L*°(0,T") such that there exists a unique
solution w to system (1)—(3) and w((-)p}, (1), ') = w.
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Definition 2. A state v’ € H@l is said to be approximately controllable to a target state
wl € H@l in a given time 7' > 0 if for each € > 0, there exists u. € L>(0,T) such that there

exists a unique solution w, to system (1)—(3) with u = u. and ||Jw.((-)}, ()2, T) — wTH<_®1 <e.

The main goal of the paper is to study whether the state w° is controllable (approximately
controllable) to a target state w” in the time 7.

Note that controllability problems for the heat equation in domains bounded with respect
to spatial variables were investigated rather completely in a number of papers. However,
these problems for the heat equation in domains unbounded with respect to spatial variables
have not been fully studied.

For control system (1)—(3), the following assertions are obtained in a given time 7" > 0
under the control bounded by a given constant (|u(t)| < U, t € [0,7]): a necessary condition
for controllability from the origin; necessary and sufficient conditions for controllability; suf-
ficient conditions for approximate controllability in terms of Markov power moment problem
constructed according to the control problem data.

Using the generalised Laguerre polynomials, we also construct orthogonal bases in special
spaces of Sobolev type. With the aid of the constructed bases, we obtain necessary and
sufficient conditions for approximate controllability in a given time for system (1)—(3) in the
case of L*°-control. The results are illustrated by an example:

Example 3. Let T =1/2,

T |z|2

—@e , 21 >0y 29 €R.

Verifying the obtained necessary and sufficient conditions for approximate controllability in a
given time for system (1)—(3), we conclude that the state w° is approximately controllable to
the state w” in the time 7' = 1/2. Using the algorithm given in [3], we construct end states
wN(-,T) € H@l and piecewise constant controls uy, depending on two parameters N and [,

[ =2(N +2),00, N = 1,00, such that

| (-, T) —’LUTHE(; —0, as N — oo, | = 0.

All obtained results have been published in [3].
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FIGURE 3.2. w] (-, T) —w™, N =4, [ = 200.

FIGURE 3.3. The influence of the controls uy; on the difference w}¥ (-, T) — w?.

On partial preliminary group classification of some
class of (1 +3)-dimensional Monge-Ampere equations.
Two-dimensional Abelian Lie algebras
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Classes of Monge-Ampére equations, in the spaces of different dimensions and different
types, arise in solving of many problems of the geometry, theoretical physics, optimal mass
transportation, geometric optics, one-dimensional gas dynamics and etc.

At the present time, there are a lot of papers and books in which those classes have been
studied by different methods.
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We consider the following class of (1 + 3)-dimensional Monge-Ampére equations:
det (uu) = F (o, x1, T2, T3, U, Ug, U1, Uz, U3) ,

0*u ou
Uy =y Ug =
O0x,0x, 0z,

Here, M (1, 3) is a four-dimensional Minkowski space, F'is an arbitrary real smooth function.

For the group classification of this class we have used the classical Lie-Ovsiannikov ap-
proach. At the present time, we have performed partial preliminary group classification of
the class under investigation, using two-dimensional Abelian nonconjugate subalgebras of the
Lie algebra of the Poincaré group P(1,4).

In our report, I plan to present some of the results obtained concerning with partial pre-
liminary group classification of the class under consideration.

where u =u(z), = (vo, 1,29, x3) € M(1,3) , v, =04,1,2,3.
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Homotopy type of stabilizers of functions with
non-isolated singularities on surfaces
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Let M be a smooth compact surface, D(M) be a group of diffeomorphisms of M, and P
be either R or S*. For a smooth function f : M — P denote by S(f) a group of f-preserving
diffeomorphisms of M, i.e.,

S(f) ={h eDM)|foh=F},

and by Sia(f) a connected component of S(f) containing id ;.
In [1] the author considered the following class of functions F(M, P) and described the
homotopy type of Siq(f) for functions from it.

Definition 1. A smooth function f € C*°(M, P) on M belongs to the class F(M, P) if the
following conditions are satisfied:

(1) for each connected component V of the boundary OM a function f|, either takes a
constant value or is a covering map,
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(2) a set of critical points X, of f is a disjoint union of smooth submanifolds of M and
Yy C Int(M),

(3) for each connected component C' of ¥; and each critical point p € C there exist a local
chart (U,¢ : U — R?) near p and a chart (V,¢ : V — R) near f(p) € P such that
f(U) C V and a local representation 1o fo ¢t : ¢(U) — (V) of f is

a) either a homogeneous polynomial f, : R?> — R of degree deg f, > 2 having no multiple

(a) g poly » gree deg fp 8 p
factors,

(b) or is given by fo(x,y) = £y"° for some ne € N>y depending of C.

Note that the class F(M, P) contains the class of P-valued Morse-Bott functions on M.

Theorem 2 (Theorem 1.2 [1]). For a function f € F(M, P) the group Sia(f) is contractible
if f has at least one saddle or M is non-oriented, otherwise Siq(f) is homotopy equivalent to

St
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On direct limits of Minkowski’s balls, domains, and
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We construct direct systems of Minkowski, Davis and Chebyshev-Cohn balls and do-
mains, direct systems of their critical lattices and calculate their direct limits. By (general)
Minkowski balls we mean (two-dimensional) balls in R? of the form

Dy fef” +ylP <1, p> 1. (1)

From the proof of Minkowski’s conjecture [1, 2, 3, 4, 5, 8] in notations [8, 9] we have next
expressions for critical determinants and their lattices:

Theorem 1. (1) A(D,) =A) = A(p,0,) = 40y, 2 < p < po;

(2) 0, = (20 — 1)l/2,

(8) A(D,) =AY =Alp, 1) =472, 1<p <2, p>py,

4)20—7)P =147, 0<7, <1,

where py 18 a real number that is defined unique by conditions A(po, o) = A(po, 1), 2,57 <

po < 2,58, po &~ 2.5725
For their critical lattices respectively AI(QO), Az(yl) next conditions satisfy: AI(QO) and AL” are two
D, -admissible lattices each of which contains three pairs of points on the boundary of D, with

the property that (1,0) € A]E,O), (—27YP 271/p) ¢ A,(}),
Denote by V(D,) the volume (area) of D,.
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1yy2
Proposition 2. The volume of Minkowski ball D, is equal 4(2((1;”;; .
Proof. (by Minkowski). Let 2” +y? < 1,2 > 0,y > 0. Put a? = £,y? = .
4 1.9 1_
V(D) = [[ & tagan )

where the integral extends to the area
E+n<1 620,120
Expression (2) can be represented in terms of Gamma functions, and we get
(T +3))?
r1+2) -

p

V(Dp> =4

We consider balls of the form
Dp: ‘x‘p+|y|p§ 1) pz 17

and call such balls with 1 < p < 2 Minkowski balls..Continuing this, we consider the following
classes of balls and circles.

e Davis balls: |z|P + |y|P < 1 for pg > p > 2;
e Chebyshev-Cohn balls: |z|P + |y|P <1 for p > po;

Let D be a fixed bounded symmetric about origin econvex body (centrally symmetric convez
body for short) with volume V(D).

Proposition 3. [6]. If D is symmetrie about the origin and convex, then 2D is convex and
symmetric about the origin.

Corollary 4. Letm be integer m > 0 and n be natural greater m. If 2™ D centrally symmetric
conver body then 2" D is again centrally symmetrc convex body.

Proof. Induction.
We consider the following classes of balls (see above) and domains.

o Minkowski domains: 2™D,, integer m > 1, for 1 <p < 2;
e Davis domains: 2™ D, integer m > 1, for py > p > 2;
o Chebyshev-Cohn domains: 2™ D, integer m > 1, for p > po;

Proposition 5. Let m be integer, m > 1. If A is the critical lattice of the ball D, than the
sublattice Aym of index 2™ is the critical lattice of the domain 2™ 1 D,,.

The direct system of Minkowski balls and domains has the form (3), where the multiplica-
tion by 2 is the continuous mapping

2 2 2 2

D 2D y 22D, mpD, — ... (3)

p p

The direct system of critical lattices has the form (4), where the multiplication by 2 is the
homomorphism of abelian groups
2

2 2 2

A, y 20, 220, MMN, 2y - (4)
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In our considerations we have direct systems of Minkowski balls, Minkowski domains and
direct systems of critical lattices with respective maps and homomorphisms. Let Qy and Z,
be respectively the field of 2-adic numbers and its ring of integers. Denote the corresponding
direct limits by Dg"“m and by Ag"“m.

Proposition 6. Dgi’rlim = hﬂQmDp S (QQ/ZQ)DP = (U LZQ/ZQ)DP

m 2m
Proposition 7. Afirtim — lim 2 A, € (Q2/Z2)A, = (U, o Lo | Ly) .
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On KB(Kantorovich-Banach) spaces and KB operators
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Let E be a Banach lattice and X be a Banach space. F is said to be a KB space if a
positive increasing sequence in the closed unit ball of E converges. Every K B-space has order
continuous norm, but the converse s not true in general. ¢y has order continuous norm, but
o is not a K B-space. For 1 < p < oo, LP-spaces are K B-spaces.

An operator T': E — X is said to be a K B operator if for every positive increasing sequence
(%) in the closed umit ball of E | the sequence (T'z,) converges. An operator T : X — X is
called demicompact if, for every bounded sequence (x,,) in X such that (x, — T'z,) converges
to x € X , there is a convergent subsequence of (x,). An operator T': X — X is said to be a
demi Dunford-Pettis if, for every sequence (x,) in X such that (x,) converges to zero weakly
and ||z, — T'%,|| = 0 as n — oo, we have ||x,|| — 0 as n — co. Every Dunford-Pettis operator
is demi Dunford-Pettis operator. An operator T': E — FE is called a demi K B operator if,
for every positive increasing sequence (x,,) in the closed unit ball of E such that (x,, —Tx,,) is
norm convergent to x € F, there is a norm convergent subsequence of (x,). For the identity
operator I : E — FE, the operator 2/ is a demi K B-operator. Every K B operator is a demi
K B operator.
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Definition 1. Let F be a Banach lattice. An operator T : £ — E is said to be an unbounded
demi K B operator if, for every positive increasing sequence (x,) in the closed unit ball of F
such that (x,, — T'z,) is unbounded norm convergent to x € F, there is an unbounded norm
convergent subsequence of (x,).

Theorem 2. Let E¥ be a Banach lattice. Fvery KB operator T : E — E is unbounded demi
K B operator.

In this study, we characterize the operators on Banach lattices that under which conditions
they satisfy unbounded demi K B operators.
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On polynomial and regular maps of spheres
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This talk offers some results on to the intersection of algebraic topology and algebraic
geometry.

Let K be a field and X C K™, ¥ C K™ algebraic sets. Recall that a map f = (fi,..., fa):
X — Y is called polynemial (resp. regular) if there are polynomials F;, G; € R[Xq,..., X,,]

such that f;(z) = Fi(x) (resp. fi(x) = gii?), Gi(X)#0) withi=1,...,n for z € X.

Remark 1. If K is a algebraically closed field then the only regular maps of algebraic sets
are polynomial maps.

Example 2. (1) Let K = R or C, the fields of reals or complex numbers. The n-sphere
SH(K) = {(xlﬂ""xnl) € Kn+1; [B%+"'+.’L’i+1 = 1} = V(Xg+ +X2_ 1)

is an algebraic set in K"™'. Write S"(R) = S and notice a diffeomorphism S*(C) ~ T'S", the
tangent bundle of S". Consequently, a homotopy equivalence S"(C) ~ S™.

(2) Let K = R, C, H with the skew R-algebra H of quaternions. The Grassmannian (of
r-planes in K™), can be identified with G, .(K) = {A € M, (K); A> = A, A= A', 1k(A) =1}
for the set M, (K) of all n x n-matrices over K.

But, for any idempotent n x n matrix over K, its rank coincides with the trace. Therefore,
G (K) can be viewed as a real affine variety.
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Let X C R™ Y C R" be algebraic sets. Write [X, Y] for the set of homotopy classes of
continuous maps and [X, Y]y, the subset of [X, Y] represented by regular maps. One of the
main purposes of the talk is to estimate the size of 7,,(S")ag = [S™, S"]ag in 7, (S™) = [S™, S™].

Basing on [1], [3] and [4], we aim to show:

Theorem 3. Ifk=0,1,...,7 then elements of m,,1(S") can be represented by regular maps
forn > 1.

Next, we make use of [2] to show a homeomorphism TG, ,.(K) — Idem,,(K) for the
tangent bundle TG, ,(K) of G, (K) and Idem, ,.(K), the set of all idempotent n x n matrices
with rank r for K = R, C, H. Finally, we present:

Theorem 4. If K =R, C, H then there is:

(1) a regular deformation retraction Idem,, ,(K) — G, ,(K);

(2) an injection Pc[Ve, Idem,, ,(K)] — Rr[V, G, (K)] from the sets of homotopy classes of
complex-valued polynomial to such a set of real-valued regular‘maps, where Vi denotes the
Zariski closure in the affine space C" of a subset VC R".
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On homomorphisms of bicyclic extensions of
archimedean totally ordered groups
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We follow the terminology of [1, 2]. Let G™ be the positive cone of a totally ordered group.
On the set B7(G)) = Gt x G we define the semigroup operation “” in the following way

(c-b ' a,d), if b<cg;
(a,b-ct-d), if b>c,
for a,b,c,d € G*.

Theorem 1. Let G and H be archimedean totally ordered groups. Then every o-homomorphism
p: G — H generates a monoid homomorphism ¢: B1(G) — B (H), and every monoid ho-
momorphism ¢: BT (G) — BT (H) generates an o-homomorphism @: G — H, which agree
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according to the formula
(z,9)¢ = ((2)2,()?),  z,yeG.

Theorem 2. Let G be an archimedean totally ordered group. Then the semigroup End®(G)
of o-endomorphisms of G is isomorphic to the semigroup End(#*(G)) of endomorphisms of
the monoid B+ (G).

We define the category TOAS by
(1) Ob(TOAG) = {G: G is an archimedean totally ordered group};
(2) Mor(TOA®) are o-homomorphisms of archimedean totally ordered groups,
and the category BETOAS in the following way
(1) Ob(BETOAB) are bicyclic extensions B1(G) of archimedean totally ordered groups
G € Ob(TOUG);
(2) Mor(BETOAB) are homomorphisms of monoids A1 (G) € Ob(BETOAS).

Theorem 3. The categories TOAG and BETOAB are isomorphic.
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The Interaction of an Infinite Number of Eddy Flows
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The Boltzmann kinetic equation plays an important role in the kinetic theory of gases. In
paper |2], we consider this equation for a model of hard spheres that describes particles of any
gas which move translationally with a certain linear velocity, collide by the laws of classical
mechanies and can not rotate. For this model, the equation has the form [1]

D) = Q. f). 1)
i) =2+ (v, gf) , @)

d2
Q(f) f) = ? /3 d‘/l / dOé|(V - ‘/1705)| X |:f(t,1', ‘/ll)f(tvxy V/) - f(tvxa V)f(taxv ‘/1)]7 (3)
R b
and V.V, V' V] are the velocities of particles before and after collision, respectively, deter-
mined by the relations
V=V —a(V-V,a),
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The solution to this equation will be look for in the next form
ft, 2, V) =gt x) Mi(t, 2, V). (4)
i=1

where M;(t,z, V) are the exact solutions of the equation (1)-(3)
D(M;) = Q(M;, M;) =0

and the coefficient functions ¢;(¢, ¥) are nonnegative smooth functions on R* and (¢, z) # 0.
As a value of the deviation between the parts of equation (1) we will consider a uniform-
integral error of the form

A=A = s [ D) - QUF )av. )
(t,x)eR% JR3
In the paper [2], several cases of coefficient functions ¢;(t, x) were obtained for which the
deviation (5) can be done arbitrarily small. This is possible thanks to a special selection of
hydrodynamic flow parameters.
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Semi-Fredholm theory in unital C'*-algebras
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The Fredholm and semi-Fredholm theory on Hilbert and Banach spaces started by studying
the integral equations introduced in the pioneering work by Fredholm in 1903 in [5]. After
that, the abstract theory of Fredholm and semi-Fredholm operators on Hilbert and Banach
spaces was further developed in numerous papers and books such as [1], [2] and [14]. In
addition to classical semi-Fredholm theory on Hilbert and Banach spaces, several general-
izations of this theory have been considered. Breuer for example started the development
of Fredholm theory in von-Neumann algebras as a generalization of the classical Fredholm
theory for operators on Hilbert spaces. In [3] and [4] he introduced the notion of a Fredholm
operator in a von Neumann algebra and established its main properties. On the other hand,
Fredholm theory on Hilbert C*-modules as another generalization of the classical Fredholm
theory on Hilbert spaces was started by Mishchenko and Fomenko. In [13] they introduced
the notion of a Fredholm operator on the standard Hilbert C*-module and proved a gen-
eralization in this setting of some of the main results from the classical Fredholm theory.
In [6], [7], [8], [9] and [10] we went further in this direction and defined semi-Fredholm and
semi-Weyl operators on Hilbert C*-modules. We investigated and proved several properties
of these new semi- Fredholm operators on Hilbert C*-modules as a generalization of the re-
sults from the classical semi-Fredholm theory on Hilbert and Banach spaces. The interest
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for considering these generalizations comes from the theory of pseudo differential operators
acting on manifolds. The classical theory can be applied in the case of compact manifolds,
but not in the case of non-compact ones. Even operators on Euclidian spaces are hard to
study, for example Laplacian is not Fredholm. Kernels and cokernels of many operators are
infinite dimensional Banach spaces, however, they may also at the same time be finitely gen-
erated Hilbert modules over some appropriate C*-algebra. Similarly, orthogonal projections
onto kernels and cokernels of many bounded linear operators on Hilbert spaces are not finite
rank projections in the classical sense, but they are still finite projections in an appropriate
von Neumann algebra. Therefore, many operators that are not semi-Fredholm in the classical
sense may become semi-Fredholm in a more general sense if we consider them as operators
on Hilbert C*-modules or as elements of an appropriate von Neumann algebra. Hence, by
studying these generalized semi-Fredholm operators, we get a proper extension of the classical
semi-Fredholm theory to new classes of operators.

Now, Kecki¢ and Lazovi¢ in [12]| established an axiomatic approach to Fredholm theory.
They introduced the notion of a finite type element in a unital C*-algebra which generalizes
the notion of the compact operator on the standard Hilbert C*-module and the notion of a
finite operator in a properly infinite von Neumann algebra. They also introduced the notion
of a Fredholm type element with respect to the ideal of these finite type elements. This notion
is at a same time a generalization of the classical Fredholm operator on a Hilbert space, Fred-
holm C*-operator on the standard Hilbert C*-module defined by Mishchenko and Fomenko
and the Fredholm operator on a properly infinite von Neumann algebra defined by Breuer.
The index of this Fredholm type element takes values in the K-group. They showed that the
set of Fredholm type elements in a unital C*-algebra is open in the norm topology and they
proved a generalization of the Atkinson theorem. Moreover, they proved the multiplicativity
of the index in the K-group and that the index is invariant under perturbations of Fredholm
type elements by finite type elements.

In this talk we will present the results from [11]| regarding semi-Fredholm theory in unital
C*-algebras as a continuation of the approach by Kecki¢ and Lazovié on Fredholm theory in
unital C*-algebras. We will introduce the notion of a semi-Fredholm type element and a semi-
Weyl type element with respect to the ideal of finite type elements and obtain a generalization
in this setting of several results from the classical semi-Fredholm and semi- Weyl theory
of operators on Hilbert spaces. The motivation for this research is not only developing
an abstract, axiomatic semi-Fredholm theory in unital C*-algebras, but also deriving an
extension of Breuer‘s Fredholm theory to semi-Fredholm and semi-Weyl theory in properly
infinite von Neumann algebras by applying our results to this special case. In the first part of
the talk we will present the results in abstract semi-Fredholm theory and semi-Weyl theory
in unital C*-algebras, whereas in the second part of the talk we will focus on the applications
of these results to the concrete case of properly infinite von Neumann algebras.

REFERENCES

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer (2004), ISBN 978-
1-4020-2525-9

[2] P. Aiena, Fredholm and Local spectral Theory I, Lecture Notes in Mathematics, 2235, (2018), ISBN 978-3-
030-02266-2

[3] M. Breuer, Fredholm theories in wvon Neumann algebras. I, Math. Ann. 178, 243-254 (1968).
https://doi.org/10.1007 /BF01350663



45

[4] M. Breuer, Fredholm theories in won Neumann algebras. II, Math. Ann. 180, 313-325 (1969).
https://doi.org/10.1007 /BF01351884

[5] E. I. Fredholm, Sur une classe d’equations fontionnelles, Acta Math. 27 (1903), 365-390.

[6] S. Ivkovié, Semi-Fredholm theory on Hilbert C*-modules, Banach J. Math. Anal., 13 (4) , 989-1016 October
(2019) doi:10.1215/17358787-2019-0022. https://projecteuclid.org/euclid.bjma/1570608171

[7] S. Ivkovié, On operators with closed range and semi-Fredholm operators over W*-algebras, Russ. J. Math.
Phys. 27, 48-60 (2020) http://link.springer.com/article/10.1134/S1061920820010057

[8] S. Ivkovié, On warious generalizations of semi-A-Fredholm operators, Complex Anal. Oper. Theory 14, 41
(2020). https://doi.org/10.1007/s11785-020-00995-3

[9] S. Ivkovi¢, On Upper Triangular Operator 2 x 2 Matrices Over C*-Algebras, FILOMAT, (2020), vol. 34 no.
3, 691-706. https://doi.org/10.2298 /FIL20036911

[10] S. Ivkovié, On Drazin invertible C*-operators and generalized C*-Weyl operators, Ann. Funet. Anal. 14,
36 (2023). https://doi.org/10.1007 /s43034-023-00258-0

[11] S. Ivkovié, Semi-Fredholm theory in C*-algebras, https://arxiv.org/abs,/2002.04905

[12] D. J. Kecki¢, Z. Lazovié, Fredholm operators on C*-algebras. ActaSci:Math. 83 |, 629-655 (2017).
https://doi.org/10.14232/actasm-015-526-5

[13] A. S. Mishchenko, A.T. Fomenko, The index of eliptic operators over C*-algebras, Izv. Akad. Nauk SSSR
Ser. Mat. 43 (1979), 831-859; English transl., Math. USSR-Izv.15 (1980) 87-112.

[14] S. C. Zivkovi¢ Zlatanovié, An Introduction into Fredholm Theory and Generalized Drazin-Riesz Invertible
Operators, 20 (28), pp. 113-198, Matematicki institut SANU, Beograd (2022). ISSN: 0351-9406

On some non-associative hyper-algebraic structures
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In this paper, new hyper-algebraic structures called hyperloop, multiloop, polyquasigroup
and polyloop, and a special class of polyloop called right Bol polyloop are introduced and
studied. It is shown that for any non-commutative (groupoid, quasigroup, loop), commutative
and non-commutative (polygroupoid, polyquasigroup, polyloop) can be constructed. It is
shown that a right Bol polyloop is characterized by any of seven equivalent identities and has
the right alternative properties. Two examples of right Bol loops were constructed with the
aid of a ring.

The newly introduced hyper-algebraic structures are:

Definition 1. (Polygroupoid, Polyquasigroup, Polyloop, Multiloop)
Let M = (P, ) be a polygroupoid. Let e € P and /: P x P — P*(H) and \ : P X P —
P*(H) such that

(a): (i) z € (z-y)/y (ii) z € (z/y) -y (iil) z € y\(y - z) (iv) z € y - (y\2) for all 2,y € P,
then (P,-,\, /) will be called a polyquasigroup.
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(b): x-e=e-x =z forall z € Pand (P,-,\, /) is a polyquasigroup. Then (P,-,\, /,€)
will be called a polyloop.

(c):xe€x-e=e-xforal z e Pand (P,-\, /) is a polyquasigroup. Then (P,-,\, /,€)
will be called a multiloop.

(d): (x-y)-z=x-(y-2) forall z,y,z € P and (P,-,\, ) is a polyloop. Then (P,-,\, /)
will be called an associative polyloop.

Definition 2. (Right Bol Polyloop)
Let M = (P,-,\, /,¢) be a polyloop, then (P,-,\, /, e) will be called a right Bol Polyloop,
if it satisfies the identity

(xy-2)y=a(yz-y)Va,y,z€ P (1)

Result on equivalence between the hyper-algebraic structures in Definition 1 and some
existing ones in literature is presented in Theorem 3.

Theorem 3. Let (G,-) be a polygroupoid.

(1) The following are equivalent:
(a) (G,-) is an hyperquasigroup.
(b) (G,-,\,./) is a polyquasigroup.

(c) (G,) is an quasigrouphypergroup.

(d) There exist hyperoperations \ and / on G such that z € x-y< v € z/y<=vy €
x\z holds for all x,y,z € G.

G, -, e) is a hyperloop if and only if it (Gy-, €) is a multiloop.

G,-) is a hypergroup if and only'if it is an associative polyquasigroup.

G,-) is an H,-group if and only if it is a polyquasigroup with WASS.

G,-) is a Marty-Moufang hypergroup (H,-group) if and only if it is a Moufang
polyquasigroup. (Marty-Moufang hypergroup of Bayon and Lygeros [1])

(6) (G,-) is a polygroup if and only if it is a associative polyloop.

Theorem 4 describes a method of construction of commutative and non-commutative
polyquasigroups (polyleops) using a non-commutative quasigroup (loop).

Theorem 4. (Construction of polygroupoid, polyquasigroup and polyloop)

Given a non-commutative groupoid (quasigroup, loop) (G,-,\, /,e€), define an hyperoper-
ation ® : G x G = P*(G) as © ©y = {xy,yx}. Then, there exist left division and right
division hyperoperations X + G x G — PB*(G) and £ : G x G = P*(G) of ® such that
exy =4\, y r} and x Ly ={x,/y,y\x} respectively and

(1) (G,®) is @ eommutative polygroupoid.

(2) (G,®, N, X) is.a commutative polyquasigroup while (G, N, ®,N\) and (G, X, X, ®) are
non-commutative polyquasigroups.

(3) (G, ®, X, K, e) is a commutative polyloop while (G, N, ®,X\) and (G, X, X,®) are non-
commutative polyquasigroups.

Theorem 5 presents some results on the algebraic properties and characterization of right
Bol polyloop as defined by (1) of Definition 2.

Theorem 5. Let (P,-,\, /,€) be a polyloop. Then (P,-,\, /,e) is a right Bol polyloop if
and only if either of the following conditions holds:

(1) X(yz-y) = (Xy-2)y
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(i) 2(yZ - y) = (zy - Z)y
(iii) z(Yz-Y) = (zY - 2)Y
(iv) X(yZ -y) = (Xy- 2)y
(v) X(Yz-Y)=(XY -2)Y (vi)x(YZ-Y)=(2Y - 2)Y
(vi) X(YZ-Y)= (XY -2)Y forallz,y,z€ P and X,Y,Z C P.

Example 6. Let (Zs,+, ) be the ring of integer modulo 2 and let G = Z%. For (4, jik) and
(p7 q, T) in G, define

(6,4, k) * (P, ¢, 7) = (i +p,J + ¢, k + 7+ jpg).
Consider Z3//N C P(Z3) where N = N(Z3,*) = {(0,0,0),(0,1,0),(1,0,0),(0,1,1)} is the
nucleus of (Z3, %) so that

73//N = {{(i,j, R), (5 + LK), (6,4, k+1), i+ 1,4, k), (i, + Lk4 DY | i,4,k e ZQ}.

Define an hyperoperation o’ on Z3//N as follows
(i,7,k)N o (p,q,7)N = {{(i+a+p,j+b+q,l<:+c—|—jab+r+ (j+b)pq),

(i+a+pj+b+qg+lk+c+jab+r+(+bpg),(i+a+pj+b+qk+c+jab+r+
G+bpg+1), (i+a+p+1,7+b+agk+c+ jab+k=+(j+bpqg),

(2+a+p,]+b+q+l,k‘—l—c—l—jab—I—T—i-(]—I—b)pq—l—l)} } i7j7k7p7Q7r S ZZch)b)CE N}
Then, (Zg//N, o) is a right Bol polyloop.
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The rank of Mordell-Weil groups of surfaces
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Let S — C be a fibraton of surface, and we can define Mordell-Weil groups. In fact, they
are Abelian groups. In 1989, Prof. Mok raised the following question in [1]:

Problem 1. How to determine the rank of Mordell-Weil group >07

In [2| and [4], the authors discuss the above problem. In this talk, we try to give some new
views in this‘problem. Especially, we use the number of singular fibers to determine whether
the rank is zero or not.

Theorem 2. Let S — P! be a fibraton of surface. If s; > 4g, then the rank of Mordell- Weil
group > 0, where s is the number of fiber whose Jacobian is singular.
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We will also discuss the following similar problem in this talk.
Problem 3. How to determine the Mordell-Weil group is trivial or not?

Prof. Kitagawa and Prof. Konno used the pencils of surfaces to consider this problem in
[3]. Here, we give the following theorem for elliptic fibrations in another way.

Theorem 4. Let S — P! be an elliptic fibration of surface with s singular fibers. If s > 3,
then Mordell-weil group s not trivial.

For the above two problems, our results are the best. Because we have the following
example:

Example 5. The Weiestrass equation y?> = 23 — t*z + t° corresponds to an ellptic fibration
over P! with II*, I, and I} at t =0, t = :I:JT‘/3 It is easy to see that Trivial lattice is Fj,
and Mordell-Weil group is trivial.
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On Asplund spaces C;(X) with the compact-open
topology
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Recall that a Banach space F is called an Asplund space if every separable Banach subspace
of F has separable dual. A celebrated theorem of Namioka and Phelps says that for a compact
space X, the Banach space C'(X) of continuous real-valued functions on X is Asplund if and
only if X is scattered. We extend this result to the class of spaces Cy(X) of continuous
real-valued funetions endowed with the compact-open topology for several natural classes of
non-compact Tychonoff spaces X. The concept of A;-spaces recently introduced and studied
has been shown to be applicable for this research.
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Explicit construction of explicit real algebraic functions
and real algebraic manifolds via Reeb graphs
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In this talk, we present explicit real algebraic functions on explicit real manifolds via
Reeb graphs. Our study is mainly motivated by real algebraic geometry, pioneered by Nash
and Tognoli for example. A smooth closed manifold can be regarded asa non-singular real
algebraic manifold. Existence theory of real algebraic manifolds and real algebraic maps has
been also well-known. We can easily attain such objects and morphisms whereas it is very
difficult to know explicitly. For more precise exposition, see [4] for example.

Of course some specific exmaples of real algebraic maps are well-known. Canonical em-
beddings and projections of unit spheres are simplest examples. As functions which are in
considerable cases regarded as generalized ones, Lie groups and so-called symmetric spaces
have nice functions represented as real polynomial functions. See [7] for example. However,
it is difficult to know their global structures and properties explicitly in general.

Problem 1. Can we know global structures and properties of the functions and maps. For
example, can we know information on preimages?

For this, we consider the following problem, established in [10]. This comes from singularity
theory of smooth maps and applications to differential topology of manifolds. The Reeb graph
of a smooth function is the graph whose underlying space is the natural quotient space of
the manifold and consists of all connected components of preimages. Its vertex set is the set
of all connected components containing some singular points of the function. As [9] shows,
for smooth functions with finitely many singular values, we can have such graphs. [8] is a
pioneering paper on this notien. Reeb graphs have some information of the manifolds nicely
and fundamental and strong tools in geometry of manifolds.

Problem 2. Can we reconstruct a nice smooth function on some manifold whose Reeb graph
is the given graph? We do not fix the manifold beforehand.

[10] constructs desired functions on closed surfaces for some nice graphs. [5] extends this
to arbitrary finite graphs. [6] considers such a problem for a certain class of finite graphs
and Morse functions such that connected components of preimages having no singular points
are spheres. Our study [1] considers the following problem first. It is for functions on 3-
dimensional closed manifolds. [9] presents a related general result through our informal
discussions on [1].

Problem 3. Can we construct the function in Problem 2 with prescribed preimages?
This talk is on answers to the following problem, pioneered by the speaker first in [2].

Problem 4. Can we construct these functions and the manifolds in finer categories such as
the real analytic category and the real algebraic category, for example?
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We present our main results with several notions we need. An algebraic domain D is a
bounded open set in the real affine space R¥ surrounded by finitely many mutually disjoint
non-singular connected real algebraic hypersurfaces each S; of which is the zero set of some
real polynomial f;. The Poincaré-Reeb graph of it is a canonically obtained graph whose
underlying space is the natural quotient space of the closure D of the domain and consists of
all connected components of preimages for the restriction of the projection m(zy, - , xx) := x1
to D. Its vertex set is defined as the set of all connected components containing some singular
points of the function 7|5_,.

Theorem 5 ([2]). Let G be a Poincaré-Reeb graph of D C R¥. Let D be an_algebraic domain
represented as the intersection (\{x € R* | f;(z) > 0}. Then we can construct a smooth real
algebraic function whose Reeb graph is isomorphic to G on some non-singular real algebraic
closed manifold.

Example 6. Any Poincaré-Reeb graph G of any bounded connected open set D C RF
surrounded by finitely many mutually disjoint spheres of fixed radii satisfies the assumption
of Theorem 5. See also FIGURE 1 of [2].

In the proof, first we construct a nice smooth real algebraic map into R* whose image is
D. More precisely, we construct one such that the preimage of a peint in the boundary is a
one-point set and that the preimage of a point in the interior is a sphere.. Last we compose
the projection.

Theorem 7 ([3]). Let I > 3 and m > 2 beiintegers. Let {t;};_, be an increasing sequence of
real numbers. Let {Fj}é;l1 be a family of smooth manifolds satisfying the following conditions.

o Fy and F,_y are diffeomorphic to the (m — 1)-dimensional unit spheres S™1.

e The others are diffeomorphic to 8™ or represented as connected sums of finitely many
manifolds diffeomorphic to the products S7 x S™=7=1 for some integers 1 < j < m — 2:
the connected sum is taken in the smooth category. For adjacent integers 1 < j <1 —2
and j + 1, either F; or Fjy is not diffeomorphic to the unit sphere.

Then we have an m-dimensional non-singular real algebraic closed and connected manifold
M and a smooth real algebraic function f : M — R such that the number of singular
points is finite, that {t;};_, ds the set of all singular values and that the preimage f~'(p;) is
diffeomorphic to F; for p; € (t;,tj41)-

The speaker was supported by JSPS KAKENHI Grant Number JP17H06128 and JSPS
KAKENHI Grant Number JP22K18267 as a member. He is also supported by JSPS KAK-
ENHI Grant Number JP23H05437. Principal investigators are all Osamu Saeki. The speaker
is‘also a Postdoctoral Researcher at Osaka Central Advanced Mathematical Institute where
he is not employed.
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Conformal equivalence of 3-webs

Konovenko N.
(ONTU, Odesa, Ukraine)
E-mail: ngkonovenko@gmail . com

Let 3-web W3 (wy, ws, ws) defined in a demain D on the conformal plane (R?, g). We say
that this 3-web is regular in D if in this domain:

(1) The discriminant
A= —Al, + I? + 1811, — AL} — 2713

differs from zero.
(2) Invariants

Jo Js
Il = 712 and [2 = 713
are functionally independent in the domain, that is, the differential 2-form 2 = dI; A

dly # 0.
Moreover, invariants Iy, I5 are coordinates in the domain.

We remark that the elementary symmetric functions
Jio= M+ A+ s,
Jo = M+ A3+ As,
Js = A
are Ss - invariants and A1, Mg, A3 are positive smooth functions.
Let’s number now forms wy, wy, ws in the domain and say that the 3-web is oriented in the

domain if in this numbering w; A ws = 712§, where r15 > 0. In this case we’ll scale forms w;
in such a way, that

w1 VAN Wy = Q.
In opposite case, we call the 3-web non-oriented and scale the 1-forms w; in such a way, that

w1 A wy = —€2.
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In these both cases we decompose 1-forms w; in the invariant coordinates I, I5

2
W; = E wijdlj,
Jj=1

Then, all functions w;;,7 = 1,2,3;j = 1,2 are conformal invariants, satisfying the following

additional relations ,
Zwij = 0, j = 1,2
i=1

Now, let’s write down the standard metric tensor g in invariant coordinates as follows

2

ij=1

Remark, that the volume 2-form €, associated with metric g, is the following

Qg = \/det ||g”||d_[1 AN d]g

__ 9 4
det ||gi; |

Therefore, the metric tensor
g=

has the associated volume form 7 = €.
Finally, we get the following result.

Theorem 1. Let 3-web Ws (wy, ws,ws) be reqular in a domain D in the conformal plane
(R2,g). Then the above functions
Gij

det [|gi;||
that are components of 1-forms wi,ws and the metric tensor ¢ in the invariant coordinates
11, I, are conformal invariants of plane 3-webs.

Moreover, any two reqular 3-webs are conformly equivalent if and only if the corresponding
functions w;; and g;; coinside.

Wig s 9ij =

The fundamental group of Riemann surface via
Riemann’s existence theorem

Yaacov Kopeliovich
(University of Connecticut School of Business Storrs)
E-mail: yaacov.kopeliovich@uconn.edu

One of the classical things we learn in any complex analysis course is the structure of the
fundamental group of Riemann surfaces that it is given by the following theorem:

Theorem 1. The fundamental group of Riemann Surfaces of genus g is given by 2g generators

with one.relation :
g

[Tlas0]=1 (1)

=1



53

[ai, bi] is the commutator of 2 group elements given by: |x,y] = xy(yx)™

However when you first encounter Algebraic curves ( Riemann Surfaces) they are presented
through cuts and analytic continuation in a pictersque way. I have never seen a proof in the
literature that the fundamental group of the surface given pictorially by cuts has a represen-
tation given by the theorem. Indeed the starting point of surface groups is the commutation
relation. In this talk T will try to fill this gap. While I don’t have a formal proof yet I will
present some results that to me seems somewhat surprising. The talk is elementary in nature
and no knowledge of heavy topology is required.

REFERENCES

[1] Mike Fried. Combinatorial Computation of Moduli Dimension of Nielsen Classes of Covers Emphasis on the
solvable cover case with historical comments from Zariski 1989 Contemporary Mathematics .

Problem with integral conditions for eveolution
equations in Banach space

Grzegorz Kuduk
(Faculty of Mathematics and Natural Sciences University of Rzeszow,Graduate of
University )
FE-mail: gkuduk@onet.eu

Let A be a given linear operator acting in the Banach space B, and for this operator,
arbitrary powers A" : B — B, n € N. Denote be x(\) the eigenvector of the operator
A which corresponds to its eigenvalue A € A, i.s. nonzero solution in B of the equation
Az(A) = Ax(A),A € A, where A C C. If A is not an eigenvalue of the operator A then

xz(A) =0.
We consider next problem with integrals condition

d*U dUu

— A)— +b(A)U = t T 1

(A HNAT =0, te[0,T], ¢

r T

[ vodt=. [ wn-g. 2
0 0

where @i,05 € B, T > 0, u: (0; @) U (5;h) — B - is an unknown function, a(A) : B — B,
b(A) : B— B~ is abstract operators with entire symbols a()\) # const, b(\) # const.
Let for m = {0,1} function M,,(t, \) be a solution of the problem

&> Myt \) M, (t,\) B
T AT b M (1 0) =0, t€[0,T], (3)
/T tE M (8, \)dt = O, k= {0, 1}, (4)

where 0y, is the Kronecker symbol.
Definition. We shall say that vectors ¢y, s € B, from B belong L C B. If dependent
exists on linear operators R, (A\) : B — B, A € A and measures p,, such that

on = / R (NNt . (5)
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Theorem. Let in the problem (1), (2), the vectors ¢, belongs L. There ¢, k = {1,2} can
be represented in the form (5). Then the formula

U(t) = / Ry (Mo (1, M) (N)djig (V) + / Ry (VM (£, M) (\)dpig (M),

defines solution of the problem (1), (2), M,,(t, A) is a solution of the problem (3), (4):
Be means of the differential-symbol method [5] we construct of the problem (1), (2).
Solution of the problem (3), (4) according to the differential-symbol [1, 2] method exists
and uniquess in the class of quasi-polynomials.
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Deformational symmetries of functions with isolated
singularities on the Mobius band
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Sergiy Maksymenko
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Let M be a smooth compact 2-dimensional manifold which have a non-empty boundary,
and P be either a real line or a cirele. Denote by D(M,Y") the group of diffeomorphisms of
M fixed on a closed subset Y C M. There is a natural right action of the group D(M,Y")
on the space of smooth functions C®(M,R) defined by the following rule: (h, f) — f o h,
where h € D(M.,Y), f € C*(M,R).

Let

O(f,Y)={foh|heD(M,Y)}
be the orbit of f under this action. Endow C*°(M,R) with Whitney C*°-topology and O(f,Y)
with indueced one.
Definition 1. Denote by F(M, P) the space of smooth maps f € C*(M, P) having the
following properties:

(1) the map f takes constant values at each connected component of M and has no
critical points on it;

(2) for every critical point z of f there is a local presentation f.: R? — R of f near z such
that f. is a homogeneous polynomial R? — R without multiple factors.
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Definition 2. Let G, H be groups, m € Z and ~v: H — H be automorphism of order 2.
Define the automorphism ¢: G*™ x H™ — G*™ x H™ by the formula

¢(90> < 9om—1, h0> ey hm—l) = (92m—1a go, -+ 92m—2; hla h’27 ey hm—lv’y(hﬂ))'

m

This automorphism ¢ generates homomorphism ¢': Z — G*™ x H™.
semidirect product G*™ x H™ x4 Z will be denoted (G, H) tm Z.

The corresponding

Definition 3. Let P be a minimal class of groups satisfying the following conditions:
1) 1P,
2) if A,B € P, then A x B € P,
3)if A€ Pand n > 1, then Ay, Z € P.

It was shown in [2] that if M has negative Euler characterictic, then fundamental groups
of orbits of functions in F(M, P) are direct products of such groups for functions only on
cylinders, disks and Mobius bands. Moreover, if M is either<a 2-disk or a cylinder, then
mO(f,0M) € P.

Theorem 4. Let M be a Mébius band and let f € F(M,P). Then
mO(f,0M) = A x (G, H) tym Ly where A,G,H € P.
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Codes from zero-divisor super-)\ graph

Raja L’hamri
(Faculty of sciences Mohammed V University in Rabat, Morocco)
FE-mail: rajaaalhamri@gmail.com

In coding theory, super-\ graphs were used to build linear codes. Thus, in order to see
whether the zero-divisor graphs might be useful into this context, it is natural to study when
zero-divisor graphs of some non elementary ring constructions are super-A graphs. In this
presentation, we show that there are various classes of rings whose zero-divisor graphs are
super-A. We apply these results to determine parameters of some linear codes associated to
zero-divisor graphs.
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Twisted Sasaki metric on the unit tangent bundle and
harmonicity

Liana Lotarets
(V. N. Karazin Kharkiv National University, Ukraine)
E-mail: 1yanalotarets@gmail.com

Let (M™, g) be an n-dimensional Riemannian manifold, 7M™ be its tangent bundle, X(M")
be the Lie algebra of smooth vector fields of a Riemannian manifold (M",g), V be the
Levi-Civita connection on M™. The standard metric on the tangent bundle of Riemannian
manifold (M™, g) is the Sasaki metric [7]. It can be completely defined by scalar products of
various combinations of vertical and horizontal lifts of vector fields. The Sasaki metric weakly
inherits the base manifold properties. That is why the rigidity of Sasaki metric motivates
many authors consider various deformations of Sasaki metric (see [1], [3] and others).

Belarbi L. and El Hendi H. introduce in [2] the twisted Sasaki metric on the tangent bundle
T'M as a new natural metric non-rigid on T'M. The twisted Sasaki metric is defined as follows.

Definition 1. [2] Let (M", g) be a Riemannian manifold and d,e : M" — R be strictly
positive smooth functions. On the tangent bundle 7M™, we define a twisted Sasaki metric
noted G%¢ by

G o (XM Yh) = §(2) 9. (X, Y),
8, h vy

Gl (X Y1) =10,

GY o (X7, V") = 2(2)ga(X, V).

for all vector fields X,Y € X(M") and (x, &) € TM™.

Note that, if § = ¢ = 1, then G°¢ is the Sasaki metric [7]. If § = 1, then G°¢ is the vertical
rescaled metric (see [3], [4]):

For a unit vector field ¢ on a compact Riemannian manifold (M, g), Gerrit Weigmink [§|
considered a very natural geometric functional

/ || A¢|PdVol(M),
M

where || A¢l| is @ norm of the Nomizu operator A X = —Vx&, ie. ||A¢]|> = Y0, 9(Aces, Ace;)
relative to some orthonormal frame (ej,...,e,). It was proved, that this functional is un-
bounded from above. The critical points of this functional was called harmonic unit vector
fields. G. Wigmink proved, that a unit vector field £ on compact Riemannian manifold is
harmonic if and only if

A = || A¢l P,
where A¢ is rough Laplacian (or Bochner Laplacian) of the field ¢ defined as A¢ = —traceV2¢,
where V?Xy = VXVY — vay.
On the other hand (see [5]), the energy of a mapping ¢ : (M™ g) — (N¥ h) between
Riemannian manifolds is defined as

E(g) = ;/M|d¢|2dvon.
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The mapping ¢ is called harmonic if it the critical point of the energy functional. It was proved
that the mapping ¢ is harmonic if and only if the divergence of its differential vanishes, or
equivalently its tension field 7(¢) = div(d¢) vanishes identically, where |d¢| is a norm of
1-form d¢ in the cotangent bundle T*M". Supposing on T3 M" the Sasaki metric gg, a unit
vector field & as a mapping & : (M",g) — (T1M™, gs) defines a harmonic map if and only
if it is harmonic and, in addition, > | R(£, A¢e;)e; = 0 relative to some othonormal frame
{eitisy-

In the present research we define the twisted Sasaki metric [2| on the unit tangent bundle
TiM™ of n-dimensional Riemannian manifold (M™, g), obtain Kowalski-type formulas, calcu-
late the tension field of the mapping & M™ — (TyM™, G%¢). As a main result, for twisted
Sasaki metric G%¢ on the unit tangent bundle 7} M™ of n-dimensional Riemannian manifold
(M™, g) we obtain the necessary and sufficient conditions for harmonicity of left-invariant unit
vector field £ and mapping & M™ — (TyM™, G%%).

Theorem 2. Unit vector field £ is harmonic on n-dimensional Riemannian manifold (M™, g)
equipped with twisted Sasaki metric G> on the unit tangent bundle TyM™ if and only if

- 1
A+ - Ad(Ve) = [|Ad % 1)

Harmonic unit vector field ¢ defines a harmonie mapping & M™ — (TyM",G%¢) on n-
dimensional Riemannian manifold (M",q) equipped with twisted Sasaki metric G°¢ on the
unit tangent bundle TyM™ if and only if

2¢ - trace(Hmg) 4 (n — 2)V8 + || A¢||*Ve = 0. (2)

As an examples, we consider the necessary and sufficient conditions for harmonicity of left-
invariant unit vector field ¢ and harmonic mapping &: M? — (T1 M3, G%¢) on 3-dimensional
unimodular Lie group equipped with twisted Sasaki metric on the unit tangent bundle T3 M?3,
using orthonormal frame of Milnor J. [6]. In addition, we consider some examples of defor-
mations that preserves existence harmonic left-invariant unit vector fields ¢ and harmonic
mapping &: M3 — (Ty M3, G%) on 3-dimensional unimodular Lie groups with the left invari-
ant metric.
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Lie structures of the Sheffer group over a Hilbert space

Eugene Lytvynov
(Swansea University, Bay Campus, Swansea, SA1 8EN, UK)
E-mail: e.lytvynov@swansea.ac.uk

Umbral calculus (also called calculus of finite differences) is essentially the theory of Sheffer
polynomial sequences, which are characterised by the exponential form of their generating
function. The class of Sheffer sequences includes the binomial sequences and Appell sequences.
After a long period when one-dimensional umbral calculus was used for purely formal calcu-
lations, the theory became rigorous in the 1970s due to the seminal works of G.-C. Rota, S.
Roman and their co-authors. Their theory is nowadays called the modern umbral calculus,
see e.g. the monographs [4, 8]. Umbral calculus found applications in combinatorics, theory
of special functions, approximation theory, probability and statistics, topology and physics,
see e.g. the survey paper [2] for a long list of references. A central object of studies of umbral
calculus is the umbral composition, which equips the set of all Sheffer sequences with a group
structure. This group is isomorphic to the Riordan group of infinite lower triangular matrices
[6, 10]. Recently, Cheon et al. [3] (see also Bacher [1]) introduced a Lie group structure on
the Riordan group and found the corresponding Lie algebra.

A lot of research has been done to extend the classical umbral calculus to the multivariate
case, see Section 4 in [2| for a list of references. However, this research had a significant draw-
back of being basis-dependent. The paper [5] developed foundations .of infinite-dimensional,
basis-independent umbral calculus.

In this talk, we will discuss Lie structures of the group of Sheffer polynomials over a Hilbert
space. Let

H+CHOCHO

be standard triple of real separable Hilbert spaces, i.e., the Hilbert space H, is densely and
continuously embedded into o and H_ is the dual of H ., while the dual paring between
elements of H_ and H,is determined by the inner product in Hy. Then, for each n, we also
get a standard triple

HE™ CHG" CHG"

Here ® denotes the symmetric tensor product. For F™ € H®" and ™ € H", we denote
by (F™, f®) the dual pairing between F™ and f. (For a real Hilbert space H, we define
HP =R
A (continuous) polynomial on H_ is a function p : H_ — R of the form
plw) =D (@ [, weM_, fPeN, i=0,1,...,n, neN,. (1)
i=0
We denote by P(H_) the vector space of all polynomials on H_. By identifying the polynomial
p(w) in (1) with-the sequence (f*)), we endow P(H_) with the topology of the topological
direct sum of the Hilbert spaces HS", i € N.
A monic polynomial sequence on H _ is a continuous linear map P € L(P(H_)) that satisfies
(PO P (w) = Y (w0, pinf ™), (2)

=0
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where p;,, € L(H",HS') and p,, = 1. Denote by pi, € L(H, HT") the adjoint (dual)
operator of p;,. Then
(PO FN (W) = (™ (w), F),
where p™(w) € H" is given by p™(w) := >0 pl,w®. Thus, p™ : H_ — H", and we can
identify the linear operator P from (2) with the sequence (p™)2.
A monic polynomial sequence (p{™)>, is called a Sheffer sequence (on H_) if it has the
exponential generating function of the form

> %@(")(w%ﬁ% = exp [(w, BE))]A(E), weMH ., ety ®)

where B(€) = €+ 350, b€, b, € LIHTE, HL), A(E) = 14+ 302, ané®k ay, € L(HS®, R), and
the equality (3) is understood as the equality of formal tensor power series in &, see [5]. We
denote by S the set of all Sheffer sequences on H_. We also denote by A the set of all Appell
sequences, i.e., the Sheffer sequences for which B(§) = ¢ in (3), and we denote by B the set
of all the binomial sequences, i.e., the Sheffer sequences for which A(£) = 1'in (3).

Since elements of S were defined through continuous linear operators in P(H_), one can ask
a natural question whether a product of two such operators yields a Sheffer sequence. The
answer to this question is positive, and furthermore the set S, equipped with this product,
becomes a group. Note that the neutral element in this group is the identity operator,
equivalently the monomial sequence p™ (w) = w®™. Furthermore, both A and B are subgroups
S, A is a normal subgroup of S, and the Sheffer group S is a semidirect product of the Appell
group A and the binomial group B.

In the talk, we will discuss the following results:

e We will show that S, A and B can be described as infinite-dimensional Lie groups, in
the sense of Milnor [7], see also |9, Chapter 3].

e We will find the explicit form of the Lie algebra of each of these Lie groups, and we
will find a Lie bracket on them.

e We will conclude that the Sheffer group is constructed from two basic operations:
gradient of polynomials on H_ and multiplication by w.

This is joint result with Dmitri Finkelshtein (Swansea University) and Maria Jodo Oliveira
(Universidade Aberta, Lisbon).
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Abstract.

A model structure on a category is a formal way of introducing a homotopy theory on
that category, and if the model structure is abelian and hereditary, its homotopy category is
known to be triangulated. So-a good way to both build and model a triangulated category is
to build a hereditary abelian model structure.

Let R be a ring and C be a left R-module. In this talk, we construct a unique hereditary
abelian model structure on the category of left R-modules, in which the cofibrations are
the monomorphisms with Gg-flat cokernel and the fibrations are the epimorphisms with Ce-
cotorsion kernel belonging to the Bass class Bo(R).
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On the structure of the distribution of one random
series.

Oleh Makarchuk
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FE-mail: makolpet@gmail.com

Let s € N,s > 1,57 q,— convergent series, &, — a sequence of independent random

n=1

variables that acquire the values 0 < ap, < a1, < ... < a@-1), < 1 with probabilities
Pon, Pin, ---» P(s—1)n respectively. Consider a random variable

+oo
&= Z ann.
n=1

According to the Jessen-Wintner theorem [1], the distribution & is pure. Partial cases for the
¢ distribution were considered in the works of [2], [3], [4].
Let

“+oo
M = {Z bnGn|bn € {aon; a1p; - 0(s—1)n } YR € N }.
n=1
Theorem 1. Let the sequence (s"|a,|) be bounded.
If \(M) = 0, then the distribution & is discrete if and only if
+oo
H max{pOn;pln; -~~;p(s—1)n} =0,
n=1
singular if and only if
+o00o
H max{ Poni Pins -5 P(s=<1)n } > 0.

n=1

If \(M) > 0, then the distribution & is discrete if and only if
+00
[T max{pon: pins i ps—1yn} = 0,

n=1
absolutely continuous if and only if

+o00 s—1

1
ZZ(pjn - ;)2 < +o0,
n=1 j=0
singular if and only if
400 s—1 1
)3 RIE
n=1 j=0
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Homotopy types of diffeomorphisms groups of simplest
Morse-Bott foliations on lens spaces
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Let F be the Morse-Bott foliation on the solid torus 7' = S x D? into 2-tori parallel to the
boundary and one singular circle S* x 0. A diffeomorphism h : T'— T is called foliated (resp.
leaf preserving) if for each leaf w € F its image h(w) is also leaf of F' (resp. h(w) = w). Gluing
two copies of T' by some diffeomorphism between their boundaries, one gets a lens space L, ,
with a Morse-Bott foliation F},, obtained from F on each copy of T. Denote by D/°(T,dT)
and D(T,0T) respectively the groups of foliated and leaf preserving diffeomorphisms of T
fixed on the boundary d7'. Similarly, let D/°(L, ,) and D'?(L;,) be respectively the groups
of foliated and leaf preserving diffeomorphisms of F, 4. Endow all these groups with the
corresponding C'*° Whitney topologies. The aim of the talk is give a complete description the
homotopy types of the above groups D/°Y(T,dT), DI*(T,0T), D' (L,,), D'*(L,,) for all p,q.
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Spaces of idempotent measures with countable support
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Methods of infinite-dimensional topology can be applied to the problem of description of
topology of various objects in particular, hyperspaces and spaces of probability measures (see
[1]-[3]). It is our aim to consider the topology of spaces of idempotent measures, which are
counterparts of probability measures in the idempotent mathematics (see, e.g, [5]).

Having in mind the identification of every idempotent measure with its density function,
we consider, for every metric space X, the set I(X) of the closed subsets A of X x [0,1]
satisfying the following properties:

Definition 1. (1) A is saturated, i.e. V(z,t) € AV, 0 <t <t= (z,t) € A
(2) X x {0} C A4;
(3) AN (X x {1}) £.
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The support of any A € I(X) is the set
supp(A) =Cl ({ z € X | 3t > 0, (z,t) € A}).

The set € I(X) is endowed with the Hausdorff metric induced by the max-metric on X x [0, 1].
Some hyperspaces of countable closed sets in metric spaces are considered in [3]. Denote by
A’ is the derived set (the set of all accumulation points) of A.

We introduce the following spaces of idempotent measures:

A (X) ={A € I(X) | 1 <|(supp(A))'| < n} (n € N);
A,(X) = [ Au(X).

neN
By K(X x [0,1]) we denote the hyperspace of all countable compact subsets of X x [0, 1].

Theorem 2. Let X be a separable metric space. Then:
(1) For n € N, the space A,(X) is F,s(K(X x [0,1]));
(2) Au(X) is Fo50(K(X x [0,1])).

The proof of this statement is based on some results from [3].
We then apply some characterization results of infinite-dimensional topology (see [4]) to

describe the topology of spaces I(X) for noncompact locally compaet separable metric spaces
X.
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SKT hyperbolic and Gauduchon hyperbolic compact
complex manifolds

Samir Marouani
(118 route de Narbonne, 31062 Toulouse, France)
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Definition 1. Let X be a compact complex manifold with dim¢ X = n, and w be a metric
on X: be a ' positive definite (1, 1)-form on X .
i) w is Kdhler, if dw = 0.
il) wis balanced, if dw™ ' = 0.
iii) w is Gauduchon, if 00w™™! = 0, such a metric always exists on a compact complex
manifold.
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iv) w is SKT (or pluriclosed), if 90w = 0

Let 7x : X — X be the universal cover of X and & = myw be the Hermitian metric on X

that is the lift of w. Recall that a C*° k-form a on X is said to be d(bounded) with respect
to w if 7ya = df on X for some C* (k — 1)-form  on X that is bounded w.r.t. @. (See [1]

and [2]). In general, we propose the following definition which generalizes that of d-bounded
of a differential form.

P

Definition 2. a C* k-form ¢ on X is said to be (8+5)—1?Vounded with respect to w if
¢ = da+ 9B on X for some C*® (k — 1)-forms a and 3 on X that are bounded w.r.t. @.

M. Gromov introduced in one of his seminal papers [1] the notion of Kdéhler hyperbolicty
for a compact Kéhler manifold X. The manifold X is called Kdhler hyperbolic if X admits a
Kahler metric w whose lift @ to the universal cover X of X can be expressed as

w = du

for a bounded 1-form o on X. As pointed out by Gromov, it is not hard to see that the Kéhler
hyperbolicity implies the Kobayashi hyperbolicity.

The Kéhler hyperbolicity is generalized in [2| to what we call balanced hyperbolicity.
This is done by replacing the Kahler metric in the Kéahler hyperbolicity by a balanced metric.
Meanwhile, a compact complex n-dimensional manifgld X is said to be balanced hyperbolic
if it carries a balanced metric w such that w™ 'is d-bounded. The Brody hyperbolicity is
replaced by what we call divisorial hyperbolicity. A compact complex manifold X is
called divisorially hyperbolic if there exists no non-trivial holomorphic map from C"~! to X
satisfying certain subexponential volume growth condition.

We introduce the following

Definition 3. Let X be a compact complex manifold with dim¢X = n. A Hermitian metric
w on X is said to be

—_—

(1) SKT hyperbolic if w is SKT and (9 + 9) —bounded with respect to w. The manifold
X is said to be SKT hyperbolic if it carries a SKT hyperbolic metric.

o~ —

(2) Gauduchon hyperbolicifw" ! is (9 + 9) —bounded with respect to w. The manifold
X is sald to be Gauduchon hyperbolic if it carries a Gauduchon hyperbolic metric.

Lemma 4. The following implication holds:

X 1s Kédhler hyperbolic — X is SKT hyperbolic

I

X is balanced hyperbolic —= X is Gauduchon hyperbolic
The following results are taken from [3|

Theorem 5. Every SKT hyperbolic compact compler manifold is Kobayashi hyper-
bolic.
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Remark 6. An immediate observation is that, since a SKT hyperbolic manifold X contains
no rational curves, then by Mori’s cone theorem we get Kx is nef.

Theorem 7. Every Gauduchon hyperbolic compact compler manifold is divisorially
hyperbolic.

Theorem 8. Let X be a compact complex SKT hyperbolic manzfold with dimcX =mn. Let
T : X — X be the universal cover of X and @ := ww the lift to X of a SKT hyperbolic

metric w on X. Fiz a primitive LZ-form ¢ on X of bidegree (p,q) with p+ q =n — 1 such
that

d¢p =0, 0¢ = 0.
Then ¢ = 0.
Corollary 9. Let ¢ be a (n—1,0)-form (respectively a (0,n—1)-form) on a connected complete
manifold (X,0) such that
peL*(X), 9p=0  dp=0.
If @ = Oa 4 0B where a and B are bounded 1-forms on )Af, then

¢ =0.

Theorem 10. Let (X,w) be a complete Kéhler manifold of dimension 2n and w = da + 0
where o and [ are respectively a bounded (0,1) and (1,0) forms on X. Then every Lo-form
U on X of degree p # m satisfies the inequality

(Ve AY) > N5 (¥, ),
where g is a strictly positive constant which depends only on n = dimX, « and 3.

Corollary 11. Let (X w) be a connected complete Kdhler manifold. If 0 = O+ 0B where
o and 8 are bounded 1-forms on-X, then HA (X C) =0, unless p = n.

This is a new conjecture.

Conjecture 12. If a compact complex manifold admits a balanced hyperbolic metric and an
SKT hyperbolic metric, then it admit o Kdhler hyperbolic metric.
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Invariant x-measures
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A triangular norm is a binary operation x on [0,1] which is associative, commutative,
monotone (i.e. a < b, ¢ < d together imply a * ¢ < b* d), and 1 is the neutral element. In
[1] the notion of x-measure is introduced. Given a compact Hausdorff space X, we define
a x-measure on X as a functional pu: C' (X, [0,1]) — [0, 1] satisfying: p(e) = ¢ for arbitrary
¢ € [0,1); p(max{ep, ¢}) = max{u(p), u(h)} for all p,¢h: Xi= [0, 1]; p(Axp) = A * ¢ for all
A€ [0,1] and ¢ € C (X,[0,1]). It is proved in [1] that the weak™* topology on the set I*(X)
of all x-measures on X makes it a compact Hausdorff space and determines a functor in the
category of compact Hausdorff spaces.

Given a system of self maps {f1,..., f,} on a compact metrizable space X and a x-measure
on{l,...,n}, in a standard way one can define an analog of the Hutchinson-Barnsley operator
for x-measures and the notion of invariant s«measure on X.

The talk is devoted to the question of existence of invariant x-measures.

Our results are in the spirit of [2] and [3] (ultrametric case). Also, in the case of metric
space X, one can define a metric on the space of all x-measures which is a modification of a
metric from [4] (in turn, the latter is a version of Bazylevych-Repovs-Zarichnyi metric [5]).
This metric allows us to apply the Banach Contraction Principle to the problem of existence
of invariant *-measures.
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Holder Continuity of Generalized Harmonic Functions
in the Unit Disc

Mohamed Mhamdi
(1215 Tehlepet Kasserine Tunisia)
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The main purpose of this talk is to discuss about the membership in Hélder classes for
(p, ¢)-harmonic functions u = K, ,[f] such that their boundaries functions f € Ag(T).

Consider the second order partial differential operators, studied in [2], of the form
Lyq = (1—|2[*)00 + p20 + qz0 — pq, z €D, (1)
where p,q are real parameters. We say that a function w is (p;q)-harmonic if u is twice
continuously differentiable in D and L, ,u = 0.
Let consider the associated Dirichlet boundary value problem of functions w, satisfying the
equation L, ,u = 0,
L,,u = 0 inD,
u = f onT. (2)
For p,q € R\Z™ such that p + ¢ > —1, the (p, ¢)—harmonic Poisson kernel is defined by
(1 — |z?)rrest L(p+1)l'(g+1)
Kpq(2) = Cpg il =vgr1r Cpa T
(1 —2)Pt(1 —z)a Fip+qg+1)

where I' is the Gamma function.

The Solution of (2) has the following (p,g)-harmonic integral representation of f € L'(T)
which defined by

u(z) = K, 4[fl(z) := 217r/0 Wprq(ze_w)f(ew)dH, z € D. (3)

Remark that if p = ¢ = 0, then the solution u is the classical harmonic function.

Let us recall the notion of "Hélder” continuity

Definition 1. For a bounded subset E of the complex plane, let w be a majorant, i.e., a
continuous increasing function on [0, 00) such that w(0) = 0 and w(t)/t is non-increasing for
t > 0. For a real or complex valued function f on E we write f € A, (F) if there is a constant
C' > 0 such that

‘f(2'1)—f(2'2)‘ SCW(’ZI_ZQD? 21, 29 € F.

If w(t) = t°, the class is simply denoted by Ag(FE) which is commonly referred to as the
Holder class for the set E of order 5 € (0, 1].

The following growth estimate is useful.

Lemma 2. [3| Let u € C}(D) and w be a majorant satisfying the Dini condition, that is,

o(z) = @dt < oo, x>0.
o U
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If f satisfies [Ou(2)| + |ou(z)| < CU=ED) for qll 2 € D, then u € Az (D).

1—z[?

As a consequence of the previous result we get the first main result

Theorem 3. [1] Let p+q>1 and 0 < < 1. Let f € Ag(T) and set u= K, ,[f]. It yields
(1) pr +4q 7é ﬁ - 17 then u € Amin{ﬁ,p+q+1}(D)'

(2) If p+q=pB—1, then u € Ay, (D), where wg(t) :=t° (1 - 10g(t)>.
In particular u € ﬂ AL (D).

0<a<f

In particular, for § = 1, and —1 < p+ ¢ < 0, we have u € A, 1(D) and we provide
an example where u ¢ A;(D). This example shows the failure of the stability of Lipschitz
continuity in the case p + ¢ < 0, i.e we provide new examples of functions f € A;(T) such
that u = K, ;[f] € A1(D), when p + ¢ € (—1,0]. For more details we refer the reader to [1].

Example 4. [1] Let consider two cases:

e The case —1 <p+q<0: let k € Z,

1 2 . .
ug(z) := / K, q(ze-?)e*dg, =~ € D.
2 J, ’
e The case p+ ¢ =0 and p # 0: let
1 2w .
up(2) :== o K, (2¢79)d0 = c, ,F(—p, —q; 1;|2]*), z€D.
0

where F'is the Gaussian hypergeometric function. Through these two case we can prove that
one of the partial derivative of uy, (resp. uo) is not bounded, which leads to u; & A1(D) (resp.
up & Ay(D) ).

Definition 5. A sense-preserving diffeomorphism u is said to be K —quasiconformal, if
|Ou(z)] + [Ou(z)] _
|Qu(z)| — |Ou(z)] —

throughout the given region €2, where K € [1,00) is a constant.

Under an extra condition, we preserve the same order of f and u.

Theorem 6. [1] Let p+q > 1 and 0 < B < 1, f € Ag(T) and set u = K, [f], be a
K-quasiconformal mapping. Then u € Az(D).
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Reeb graph invariants of Morse functions, manifolds
and groups

Yukasz P. Michalak
(Adam Mickiewicz University in Poznan, Poznan, Poland)
E-mail: 1ukasz.michalak@amu.edu.pl

The Reeb graph of a Morse function on a closed manifold is obtained by contracting each
connected component of its level sets. There are two necessary and sufficient conditions
for a finite graph to be realized as the Reeb graph of a Morse function on a given closed
manifold: it needs to have the so-called good orientation and its first Betti number cannot
exceed the corank of the fundamental group of the manifold. Moreover, any free quotient
of this group can be represented as the Reeb epimorphism of a Morse function which is
induced on fundamental groups by the quotient map from the manifold to the Reeb graph.
It leads to the study of relations between the notions of equivalence of epimorphisms onto
free groups, cobordism of systems of hypersurfaces and topological conjugation of Morse
functions.manifold to the Reeb graph.

However, the realization of a graph as the Reeb graph of a Morse function is possible only
up to a homeomorphism of graphs in general. The minimum number of degree 2 vertices
in Reeb graphs of Morse functions is a strong invariant of the topology of manifold. It has
three essentially different lower bounds in terms of the fundamental group, homology groups
and Lusternik-Schnirelmann category. In the case of orientable 3-manifolds all of them can
be improved by the inequality involving the Heegaard genus, and there is also another lower
bound by a new invariant defined in terms of finite presentations of the fundamental group.
We use Freiheitssatz, a fundamental fact from one-relator groups, to calculate it in some cases.
The equalities in these bounds are closely related with the problem of finding a function such
that the first Betti number of its Reeb graph is equal to corank. It is a one of potential
geometric methods of calculating the corank, which is quite a complicated task in practise.
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Car-trailers’ systems are locally nilpotentizable (a
Trieste 2000 conference revisited)
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A car towing a number of passive idealized trailers is a classical kinematical model visual-
ising so-called Goursat distributions. In the description of that series of models (indexed by
the number of trailers) there are used trigonometric functions of angles between neighbouring
trailers and between the car and its closest trailer. This heavily obscures the algebraic side of
the models: the generated control Lie algebra is clearly not nilpotent and infinite-dimensional.
Hector Sussmann asked in 1998 if the car+trailers’ kinematical systems were nilpotentizable.
We presented a positive answer to that question at a Trieste 2000 conference. However, recent
scientific meetings show that that our result is not quite known... The aim of the talk is to
make better known that result and to sketch our [old| proof of it.
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Degree theory for proper C! Fredholm mappings with
applications to boundary value problems on the half
line
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We overview elements of the definition and several properties, of a degree theory for proper
C' Fredholm mappings of index zero [1, 2]. We establish sufficient conditions for solv-
ability of ‘an ODE system v + g(t,w) = fi(t), w + h(t,v) = fo(t) under various boundary
conditions on the half line. Note that the unbounded domain prevents the use of Leray-
Schauder degree. We establish sufficient conditions for solvability of a semilinear parabolic
PDE u;, — A(t)u + F(t,z,u) = f(t,x), once again with conditions at ¢ = 0 and as ¢t — oc.
These applications illustrate methods to meet the conditions associated with the degree the-
ory, including smoothness, properness, the Fredholm property, and the establishment of a
priori bounds. (Note: this is an exposition of work previously published |3, 4].)
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How far apart can the projection of the centroid of a
convex body and the centroid of its projection be?
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Let K be a convex body in R”, i.e., a compact convex set with non-empty interior. The
centroid (the center of mass) of K is the point

1
C(K) = m/}(.ﬁl’:dl‘,

where |K| denotes the volume of K and the integration is with respect to Lebesgue measure.
In this work we study the following question. Let H be a hyperplane in R™. Denote by
Pye(K) the orthogonal projection of the centroid of K onto H and by ¢(PyK) the centroid
of the projection of K onto H. For centrally symmetric bodies these two points coincide, but
for non-symmetric bodies these points are generally different. Thus it is natural to ask how
far apart these two points can be relative to some linear size of K. More precisely, we are
interested in the smallest constant D,, such that for any convex body K in R™ we have

|Pyce(K) — ¢(PyK)| < Dywg (u),

where v is the unit vector parallel to the segment connecting Pyc(K) and ¢( Py K), and wg (u)
is the width of K in the direction of u, given by

wr(u) = max{(z,w)} — min{(z, u)}.

Questions of this type began attracting attention several years ago in connection to Griinbaum-
type inequalities for sections and projections; see [5], [2]. In particular, an analogue of the
question above for sections of convex bodies is stated in [4, p. 127]. For other questions
related to distances between various centroids the reader is referred to the book [1, p. 36] and
the references contained therein.
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Theorem 1 ([3]). Let D,,, n > 3, be the smallest number such that
|Pyc(K) — c¢(PyK)| < D, - wi(u), (1)
for every convex body K in R™ and every hyperplane H C R™, where
_ Pyc(K) - c(PgK)
 |Pue(K) — o(PyK)|
provided Pyc(K) # ¢(PyK). Then

) Dy =1-— ~ 0.1835; the sequence {D,}>° 4 is increasing; and lim D, & 0.2016.
n—roQ,

( ) Inequality (1) turns into equality if and only if K is a body obtained as follows. For a
fixed hyperplane H and a vector u parallel to H, denote by 6 a_unit normal vector to
H and take any (n — 2)-dimensional subspace U orthogonal to w and transversal to 6.
Let Ly be any convex body in U. Denote by tLg the dilation of Ly with respect to its
centroid by a factor of t = tyee, which will be defined later in the proof. Let A, u, v be
real numbers, u # v. Define Ly = tLo+ Au+ ud and Ly =tLo+ Au+vl. Then K is
the convex hull of Ly, Ly, and Ly. Figure 1.1 shows an example of such a body in R?
when H = {x3 = 0}, u= ey, and U is the linear span of es.

m

I3
[}

FIGURE 1.1
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Contractions of representations and realizations of Lie
algebras
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Realizations (first-order differential operators) and representations (linear operators) of Lie
algebras are widely applicable in modern group analysis of differential equations, in classifica-
tion of gravity fields, in geometric control theory, in difference schemes for numerical solutions
of differential equations, in theory of invariants, etc.

To study limit processes that connect different theories or their mathematical models it
is useful to investigate contractions (limit connections) of their underling symmetries. In
practice, we first study possible limit processes between abstract Lie algebras, and then, we
need to find a way how to introduce similar limits in the existing realizations or representations
of Lie algebras. Unfortunately, the direct application of the known contraction to a realization
or representation of a Lie algebra gives several zero operators, what makes it impossible for
further application to real equations.

To overcome this obstacle, we propose to construct a parameterized series of realizations
and representations based on the action of the contraction matrix on the tensor of structure
constants. The realizations and representations obtained in this way coincide in the limit with
the corresponding realizations and representations of contracted Lie algebras. We provide the
algorithm for constructing parameterized series and present a number of illustrative examples.

For clarity, let’s consider main definitions. Let £,,(V') be the variety of n-dimensional Lie
algebras (set of Lie brackets) on a vector space V over the field R, then each n-dimensional Lie
algebra g = (V,[.,.]) corresponds to a multiplication rule p € L,,: Va,y € V  [x,y] = pu(z,y).

General linear group GL(V') acts on the variety of Lie brackets as follows:

VA € GL(V), Yu€ L, (Au)(z,y) = A" (u(Ax, Ay)) Vz,y € V.

Consider a continuous function U(e) = U: (0,1] — GL(V) and a parameterized family
of Lie algebras g. = (V,[.,.]c) with the Lie product defined for arbitrary elements of the
vector space [x,y]. = U.7'[U.z,U.y]. All such algebras are isomorphic to the initial algebra

g=MWl ]
Definition 1. If Vz,y € V there exists a limit
o . _ . —1
['T7 y]O T 821}30[3}; y]s - sgrEO Us [UE$7 Usy]
then [.,.Jo is a well-defined Lie bracket and Lie algebra go = (V, pio) is called a contraction of

the Lie algebra g.

Let M C R™ be an open domain. Let us denote the Lie algebra of smooth vector fields on
M by Vect(M).
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Definition 2. A realization of a Lie algebra g in vector fields on M is a homomorphism
R: g — Vect(M).

Let us consider the algebra of endomorphisms gl(V') of the vector space V' and define a
representation, which is closely related to Lie algebra module.

Definition 3. A representation of a Lie algebra g is a homomorphism

p:g—gl(V).
Let us outline the algorithm in the case of realizations:

(1) Construct parameterized structure constants using the continuous function U, that do
realize the desired contraction Cgi,j, = (Ug)ﬁ,(Ug)g,(UE_l)ﬁ,ij,
constants of the initial Lie algebra.

(2) Calculate e-dependent adjoint actions (using the structure constants Cf’;-,j,
and differential 1-forms: ad®e;, exp(—xz;ad%e;), w®(x).

(3) Find the inverse transformation to obtain the vector fields °(z) = (w®(x)) ', that are
the parameterized realization that do contracts to the realization of the contracted
Lie algebra.

where C’ikj are structure

), exponents

To conclude let us mention that contraction of the fixed realization or representation of
a Lie algebra is more complicated task. Namely, in the case of realization, we first have to
define it’s subalgebra (studying the kernel of the linear operator in the initial point), then we
have to find the equivalence transformations to the canonical realization. After that we can
apply our algorithm and complete it by the inverse of the equivalence transformations.

REFERENCES

[1] A. A. Magazev, V. V. Mikheyev, and I. V. Shirokov SIGMA 11:066 (2015) 17 pages.
[2] M. Nesterenko, R. Popovych; J. Math. Phys. 47 (2006) 123515, 45 pages.
[3] R. O. Popovych, V. M. Boyko, M. O. Nesterenko, M. W. Lutfullin, J. Phys. A 36 (2003) 7337-7360.

Geodesic orbit pseudo Riemannian nilmanifolds

Yuri Nikolayevsky
(La Trobe University, Melbourne, Australia)
E-mail: y.nikolayevsky@latrobe.edu.au

We know that in the Riemannian case, (i) for every homogeneous space, there is a re-
ductive decomposition at the level of Lie algebras, (ii) the isometry group of a simply con-
nected nilmanifold is the semidirect product of isometric automorphisms and translations
(Wolf/Wilson), and (iii) geodesic orbit nilmanifolds are necessarily two-step nilpotent or
abelian (Gordon). Neither of this is true in pseudo-Riemannian signature. However, it turns
out that in low signature, some results may still be “rescued”. This is a joint work (which is
partially still in progress) with Joe Wolf, Zhiqi Chen and Shaoxiang Zhang.
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The conditions of hypercyclicity of weighted backward
shifts

Zoriana Novosad
(Lviv University of Trade and Economics, 10, Tuhan-Baranovsky Str., Lviv 79005, Ukraine)
E-mail: zoriana.maths@gmail.com

Andriy Zagorodnyuk
(Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk
76018, Ukraine)
E-mail: azagorodn@gmail.com

It is well known that any infinite-dimensional separable Banach space admits hypercyclic
operators while finite-dimensional does not. Hypercyclicity of linear operators is a purely
infinite-dimensional phenomenon. Another infinite-dimensional phenomenon is the existence
of entire analytic functions of unbounded type. The weighted backward shift, introduced by
Rolewicz [1], is a significant example of hypercyclic operator. On the other hand, in the talk,
we will show that by using the backward shift, it is possible to construct analytic functions
of unbounded type.

Definition. An analytic function f on a Banach space is said to be a function of bounded
type, if it is bounded on all bounded subsets of X.

We denote by H(X) the space of all analytic functions on X and by H,(X) the subspace
of analytic functions of bounded type. It is'well known that if X is infinite-dimension, then
Hy(X) is a proper subset of H(X). Elements of H(X) \ H,(X) are called analytic functions
of unbounded type [2].

Theorem. Let P, be a sequence of n-homogeneous polynomials on a Banach space X
with | P,|]] =1 and T: X — X a bounded linear operator satisfying

0 < limsup || Byo T"||" < oc.
n—oo
Suppose that there exists a dense subspace Zy C X such that for every z € Z; there is a
number N such that T%(z) = 0..Then

f(x):ZPnOT”(m)

is an analytic function of unbounded type on X.

The backward shift (xq,xs,...,) — (22,23,...,) in £,, 1 < p < 0o or ¢ is an example of
the operator T.

This research was supported by the National Research Foundation of Ukraine, 2020.02/0025.
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Studying the properties of a superpotential using
algebraic equations

Tetiana Obikhod
(Institute for Nuclear Research NAS of Ukraine, 03028, Kyiv, Ukraine)
E-mail: obikhod@kinr.kiev.ua

The real world as we know it occurs at energies well below the Planck scale, so it is very
well described by effective field theory. These effective field theories arise as low-energy de-
scriptions of some “vacuums” of string theory, which in some approximate schemes can be
considered as solutions of the equations of motion for a compactification space. In attempts
to understand the fundamentals of string theory, it has become clear that we need a better
understanding of conformal theories as these are the building blocks of string vacua. Confor-
mal theories are in general very complicated but using the renormalization group (RG) theory
and the identification of fixed points of RG flow with conformaltheories, we can characterize
the conformal theory by the corresponding data. This approach is most powerful when ap-
plied to superconformal models with N = 2 worldsheet supersymmetry [1]. The action for a
N = 2 supersymmetric quantum field theory takes the form

/dzzd49K(q)i, D) + (/ d22d®OW (®;) 4+ c.c.),

where W is a holomorphic function of the chiral superfields ®;. W is not renormalized and
provides us with an invariant of the renormalization group flow with which to characterize
two-dimensional theories. For example, the Landau-Ginzburg super-potential W (®) = oP*2
corresponds to the A-series modular invariant N = 2 minimal theory of level p and central
charge ¢ = 3p/(p + 2). For a tensor product of minimal models we have a superpotential

W(Dy,..., &) =0 4 [ 4 oprt2,

At the fixed point of superpotential, the theory must be scale invariant, and so potential has
the property that if one scales the fields according to
(I)i — )\wiq)i,
then the potential scales by
W(A“id;) = AW (D;).

Such functionals are called quasi-homogeneous. The scale invariance is connected with con-
formal field theory. In particular for modal deformations to be considered as physical moduli
of the conformal field theory, they should respect the quasi-homogeneity of the superpoten-
tial. This is a special property of N = 2 theories, and follows from the non-renormalization
theorems. These superpotentials could be shown by checking the correspondence between
the central charge ¢, the dimension of chiral fields, and the ring of the corresponding minimal
model. This means that we can obtain the C ala b i- Y a u manifold with the tensor
product of the minimal discrete models from the point of view of L. G theory [2].

We considerd different N = 2, 3,4 models, calculated corresponding central charges, ¢ =
3,6,9 and-investigated the forms and roots of such manifolds for singular 2-fold, or K3 surface,
defined by the following polynomials [3]

FAN—I :$]1V+$§+x§ﬂ(N22>



7
Fg, =x‘11+1‘§+m§
Fpy =2} 4+ 23 + 23
Es example, for polynomial of the form
52° + 6y + 322 =0 (1)

we have the following surface and roots in complex plane

FIGURE 0.1.

FIGURE 0.2. Roots of equation (1).
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On critical submanifolds of the Willmore energy in four
dimensions

Peter Olamide Olanipekun
(The University of Auckland)
E-mail: peter.olanipekun@auckland.ac.nz, olanipekunp@gmail.com

We establish a rigidity result for the critical points, with boundary, of the four dimen-
sional Willmore energy (see [13] where this energy was studied from analytical standpoint).
These critical points satisfy a 4-Willmore equation which is a sixth order nonlinear elliptic
partial differential equation. We establish several curvature estimates and prove that four
dimensional Willmore submanifold with totally geodesic boundary condition are umbilic.

The rigidity of several kinds of submanifolds has been widely studied in literature under
different contexts. For instance, while some rigidity results for manifolds with bounded
Ricci curvature were obtained in [2| other studies have focused on minimal submanifolds
[3, 5, 6,7, 11, 14, 16|, critical points of the Willmore functional [8, 9, 10] and hypersurfaces of
constant weighted mean curvature [1, 4, 15]. In [12], MeCoy and Wheeler considered surfaces
¥ immersed into R?® which are critical points of the functional

JLR
>

and whose second fundamental form satisfies the smallness condition

/w?dug
W

where ¢ is a small universal constant. They obtained the following result.
Theorem 1. Let f : ¥ — R3 be an immersion satisfying
A*H + |h|PAH — (hg)"V;HV,;H =0
with the boundary conditions
lh|=0 and V,H=V,AH =0.

If f also satisfies fz |h|2du < e for some sufficiently small € > 0, then the immersed surface
f(X) is part of a flat plane, where n is the unit conormal to the boundary of X.

Our main result is the following rigidity theorem for critical points of the energy ().

Theorem 2. Let & : X — R™ be an immersion of a 4-dimensional manifold ¥ satisfying
S hPdp < e and [ |h|*dp < e for some sufficiently small e > 0. If ® also satisfies

—

W =0 (1)
together with the boundary conditions

WﬁVAJ_ﬁ = WﬁVﬁ = 6 and ﬁ = 6 (2)
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where

. 1 .- 1= - L . Lo -
W= —oATH — S (R ALY — g VAP H + 2mV (] - V' H) H) = 2mV(H - 1) V' H)

- | oo oo o -
+2(m5ViH - 7V ;H)hY — 5Al((H W) hy) — 2V Ve ((H - h*YH) — 28| H|*H

) Lo o oo IR oo - ., .
= 5 (H - W) (i - g )B" — A(H - hig) (H - hi)h?* + AlH - h[PH +TA (|H|*H) + 7T|H(H - hij)h"

then the submanifold ¥ is umbilic with totally geodesic boundary.

Note that the Willmore equation (1) is a sixth order nonlinear partial differential equation.
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Fermat—Torricelli sets of finite sets of points in
Euclidean plane

Illia Ovtsynov
(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
E-mail: iliarkov@gmail . com

Definition 1 ([8]). Let (X, p) be a metric space and z1,...,x, € X be a finite collection of
points in X. A point T € X is called a Fermat—Torricelli point for x1, ..., x, whenever for
each x € X the following inequality holds true:

n

k=1 k

=1

Definition 2. Fermat—Torricelli set for fixed points {z1,:..,z,} is a set of all Fermat—
Torricelli points for this collection of points.

In the case when X = R" is the Euclidean space with the standard metric, then for every
finite collection of points 1, ..., z, € R” the set ofits Fermat—Torricelli points is non-empty,
convex and compact. The problem of finding the Fermat—Torricelli set is-called the Fermat—
Torricelli problem.

This problem has both geometric and probabilistic interpretation. We can describe discrete
probabilistic space Q = {x1,...,x,} with a probabilistic measure P on it, so that Vk €

1
{1,...,n} : P(xy) = e If for any xy € (X,p) we define a random variable &, (z) =

p(x,z0), x € €, then Fermat—Torricelli set is the set of those zy € (X, p), for which random
variable §,, has the least mathematical expectation.

Theorem 3. Let A be the Fermat—Torricelli set for a collection {x1,...,x,}, and B be the
Fermat—Torricelli set for a collection {y1,...,yr} in Euclidean metric space (R™,p) with

standard metric. Assume that all points xq,...,ZTn, y1,...,Yr are mutually distinct. Then if
AN B # @, then A( B is the Fermat—Torricelli set for {x1,...,Tn,y1,...,Yr}

Since now we will name BEuclidean metric space (R?, p) with standard metric merely Eu-
clidean plane.

Corollary 4. If mutually distinct points x1, xs, T3, x4 in the Euclidean plane are vertices of
a convex. quadrilateral, then the point of intersection of its diagonals is a unique Fermat—
Torricelli point for xy, a2, 3, 4.

Corollary 5. Let xq, %9, 3, x4 be mutually distinct points in the Fuclidean plane laying on
the same line in the given order. Then Fermat—Torricelli set of these points is the following
set

A=A{ars+ (1 — a)zs|a € [0;1]}.

Corollary 6. Let x1,x9,x3 be the vertices of some triangle in the Euclidean plane, and x4 be
some.other point which lays on the side of triangle between xo and x3. Then x4 is a unique
Fermat—Torricelli point of x, xs, T3, T4.



81

Corollary 7. Let A1Asy... A, be a regular polygon with an even number of vertices. Then
its center of gravity is a unique Fermat—Torricelli point of its vertices.

Theorem 8. Let x1,...,x,,n > 3 be distinct points in the FEuclidean plane. Then the
following statements hold.

1) If 1, ..., 2, lay on the same line in the given order and n is any even number, then
the set

A= {x€X|x:axg+(1—Oé)$g+1,Oé€ [0; 1]}

18 a Fermat—Torricelli set for them.
2) If x1,...,x, lay on the same line in the given order and n is an odd number, then the
point Tnoiyy is a Fermat—Torricelli set for them.

3) If x1,..., 2, do not lay on the same line, then their Fermat—Torricelli point is unique.

Lemma 9. There is a unique point inside of triangle from which every side of triangle is
vistble under angle 120° if and only if every angle of this triangle is less than 120°.

Different sources name this point in different ways: Fermat point, Torricelli point, and even
Steiner point [8]. We will define it as Steiner point for respective triangle.

Theorem 10 ( [8]). Let x1,xq,x3 be vertices of triangle in Fuclidean plane every angle of
which is less than 120°. Then the Steiner point for this triangle is a unique Fermat—Torricelli
point for xi,xs, T3.

Theorem 11 ( [8]). Let xy1,x9, 23 be wertices of triangle in Buclidean plane one of whose
angles is not less than 120°. Then the vertice, whose angle of triangle is not less than 120°,
is a unique Fermat—Torricelli point of its vertices.
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Degenerations of complex associative algebras of
dimension three

Christos Pallikaros
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Let A3(C) (= C?7) be the space of structure vectors of 3-dimensional algebras over C con-
sidered as a G-module via the action of G = GL(3,C) on A3(C) ‘by change of basis’. We
determine the complete degeneration picture inside the algebraic subset A5 of A3(C) consist-
ing of associative algebra structures via the corresponding information on the algebraic subsets
L3 and J3 of A3(C) of Lie and Jordan algebra structures respectively. This is achieved with
the help of certain G-module endomorphisms ¢y, ¢ of A3(C) which map .43 onto algebraic
subsets of L3 and J3 respectively.

This is a joint work with Nataliya M. Ivanova
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Lusternik-Schnirel’mann category
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FiGURre 0.1. Fig. 1.1 from Theorem 1.6 & Fig. 1.2 from Corollary 1.8.

This paper introduces results for several forms of the geometric Lusternik-Schirel’'mann
categories (LS gcat).
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1. GEOMETRIC LUSTERNIK-SCHNIREL'MANN CATEGORY

Let h : I — K be a continuous map called homotopy (briefly, path in a space K.
A homotopic class for different maps h (denoted by [h] = {ho,..., h;,.. .,hn,l[n}} with
[n] = mod n € Z%) is a collection of h;j) homotopic maps that have the same endpoints,
namely, ;(0) and h;(1). The geometric realization of [n] (denoted by |[h]|) is a collection of
sinusoidal curves, each being the geometric realization of a path h.

Definition 1.1 (Geometric LS Category). ' For a topological space X, the geometric category
of X is the minimal covering of X with contractible open subsets of X.

Lemma 1.2. Let h be a homotopic sinusoidal path. The geometric realization |h| s a planar
sinusoidal curve.

Lemma 1.3. Let [h] be a collection of homotopic paths with common endpoints. The geo-
metric realization |[h]| is a collection space filling planar curves.

Lemma 1.4. Let Apqr be a planar filled triangle in a space K, geometrie realization |[h]|
such that each path h has endpoints h(0),h(1) € K \ Apgr. Then limit h; € [h] 2 Apgr.
1—00

Lemma 1.5. Let h be a homotopic path in space K.

1° Every path h is contractible.

2° There exists a minimal |[R]| in space K with h; € [h] with the same boundary endpoints
h(0),h(1) € OAPpgr such that |[h]| covers triangle Apqr C' K.

3° Every planar triangle in K has a-minimal covering |[h]|.

Theorem 1.6. There exists gcat(|[h]| € 2%) such that min|[h]| D Apgr € 2X.

Example 1.7. From Theorem 1.6, the triangle Apgr in Fig. 0.1 has a |[h]| minimal covering,
which is a gcat(T).

A cluster of triangles {Apgr} in a Euclidean space K is a collection of triangles attached
to a common vertex. From Theorem 1.6, we have

Corollary 1.8. Let [{[r]}| C K such that each h € {[h]} C K \ {Apqr} has the same
endpoints. Then 3gcat(|{[h]}|): min |{[h]}| D {Apgr} € 2K.

FIGURE 1.2. Delaunay Triangle cluster minimally covering bus in video frame
foreground.

L 1, Montejano, Lusternik schirel’mann category: a geometric approach, Banach Cent. Publ. 18 (1986),
117-129.



84

Example 1.9. From Corollary 1.8, there is a gcat(|{[h]}| such that gcat(|{[R]}| is a
minimal covering of the triangle cluster { Apgr} N p, which is a bounded region in Fig. 0.1.

2. MINIMAL VIDEO FRAME FOREGROUND OBJECT COVERING

Delaunay triangulations® represent pieces of a continuous space in form of triangles with
edges attached to selected vertices®.

Theorem 2.1. Let TC be a Delaunay triangle cluster with k triangles minimally covering a
planar bounded region E € 2%°. Then gcat(TC) = k.

Example 2.2. With restrictions on the selection of vertices (e.g., centroids), we obtain
a minimal cluster T7C of k triangles covering a bus, which is a bounded region in a De-
lauany triangulation of the video frame foreground in Fig. 1.2. Hence, from Theorem 2.1,

gcat(TC) = k.

Fixed point theorem for mappings contracting
perimeters of triangles and its generalizations

Evgeniy Petrov
(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk,
Ukraine)
E-mail: eugeniy.petrov@gmail.com

Ruslan Salimov
(Institute of Mathematics of the NAS of Ukraine, Kiev, Ukraine)
E-mail: ruslan.salimovi@gmail.com

We establish two generalizations of the fixed point theorem for mappings contracting
perimeters of triangles.” In the first case we consider these mappings in semimetric spaces
with triangle functions introduced by M. Bessenyei and Z. Pales. Such approach allows us
to obtain corollaries for different types of semimetric spaces. In the second case we establish
the fixed point theorem in ordinary metric spaces for more general class of mappings than
mappings contractive perimeters of triangles.

Let X be anonempty set. Recallthat a mapping d: X x X — R™, R™ = [0, 00) is a metric if
for all &,y, z € X the following axioms hold: (i) (d(x,y) =0) & (x = y); (ii) d(z,y) = d(y, z);
(iii) d(z,y) < d(z,2)+d(z,y). The pair (X,d) is called a metric space. If only axioms (i) and
(ii) hold then d is called a semimetric. A pair (X, d), where d is a semimetric on X, is called
a semimetric space.

In 2017 M. Bessenyei and Z. Péles [1] introduced a definition of a triangle function ®: Ki —

R fot a semimetric d. We use this definition in a slightly different form restricting the domain
and the range of ® by R2 and R*, respectively.

B. Delaunay, Sur la sphére vide. a la mémoire de georges voronoi, Izvestia Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk 7 (1934), 793-800.

3] F. Peters, Proximal Voronoi regions, convex polygons, & Leader uniform topology, Advances in Math.:
Sci. J. 4 (2015), no. 1, 1-5.
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Definition 1. Consider a semimetric space (X,d). We say that ®: Rt x Rt — R* is a
triangle function for d if ® is symmetric and monotone increasing in both of its arguments,
satisfies (0,0) = 0 and, for all x,y, z € X, the generalized triangle inequality
d(z,y) < ®(d(z, 2),d(z,y))

holds.
Definition 2. Let (X, d) be a semimetric space with |X| > 3. We shall say that 7: X — X
is a mapping contracting perimeters of triangles on X if there exists a € [0,1) such that the
inequality

d(Tz,Ty) + d(Ty,Tz) +d(Tz,Tz) < a(d(z,y) + d(y, z) + d(z, 2)) (1)
holds for all three pairwise distinct points x,y,z € X.

Note that the requirement for x,y,z € X to be pairwise distinet is essential. One can see
that otherwise this definition is equivalent to the definition of contraction mapping.

Theorem 3. Let (X,d), | X| > 3, be a complete semimetric space with the triangle. function
D satisfying the following three conditions:
1) The inequality
(K€, kn) < kD(§,n)
holds for all k,&,n € RY.
2) For every 0 < a < 1 there exists C(a).>0 such that for everyp € NT the inequality
O(1,P(a, ®(a?, ..., 2P al)))) < C(a)
holds.
3) ® is continuous at (0,0).
Let the mapping T: X — X satisfy the following two conditions:

(i) T(T(x)) # x for alla € X such that Tx # x.
(i) T is a mapping contracting perimeters of triangles on X .

Then T has a fized point. The number of fixed points is at most two.

Corollarly 4. Theorem 8 holds for semimetric spaces with power triangle functions ®(x,y) =
(x4 y?)a if ¢> 0.
If the usual triangle inequality is replaced by d(z,y) < K(d(z,z) + d(z,y)), K > 1, then

(X,d) is called a b-metric space. The definition of a b-metric space was introduced by Czer-
wik [2].

Corollary 5. Theorem 8 holds for b-metric spaces if aK < 1, where « is the coefficient
in (1).

Definition 6. Let (X, d) be a metric space with |X| > 3 and let functions F, G: Rt x Rt x
R* — R* be such that for all £,7,( € R* the following conditions hold:

F(na§7<) = F(éﬂ?a C) = F(&;Cvn)a
G(n.&,¢) =G(&n, Q) =G(E(n),
G<§7777C) 267
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F(&n,¢) = G(&n,0),
G(0,0,0) = 0 and G is continuous at (0,0,0).
We shall say that T: X — X is an (F, G)-contracting mapping on X if there exists a € [0, 1)
such that the inequality

F(d(Tz,Ty),d(Ty, Tz),d(Tz,Tz)) < aG(d(z,y),d(y, 2), d(z, z))
holds for all three pairwise distinct points x,y,z € X.

Theorem 7. Let (X,d), | X| > 3, be a complete metric space and let T': X — X be a mapping
satisfying the following two conditions:

(i) T(T(x)) # x for all x € X such that Tx # x.
(ii) T is an (F,G)-contracting mapping on X.
Then T has a fized point. The number of fixed points is at most two.

If in Theorem 3 we set ®(z,y) = « + y or in Theorem 7 we set F(§,n,() = G(&,n,() =
&+ n+ ¢, then we get the following.

Corollary 8. Let (X,d), |X| > 3, be a complete metric space and let the mappingT: X — X
satisfy the following two conditions:

(i) T(T(x)) # x for all x € X such that Tx # x.
(ii) T is a mapping contracting perimeters of triangles on X .

Then T has a fixed point. The number of fixed points s at most two.
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Structure of codimensional one flows on the 2-sphere
with holes

Alexandr Prishlyak
(Taras Shevchenko National University of Kyiv)
E-mail: prishlyak@yahoo.com

First, we consider gradient vector fields on a sphere. Since the function increases along each
trajectory, the field has no_cycles and polycycles. In general position, a typical gradient field
is a Morse field (Morse-Smale field without closed trajectories). In typical one-parameter
families of gradient vector fields, two types of bifurcations are possible: saddle-node and
saddle connection. The corresponding vector fields at the time of the bifurcation are fields
of codimension one. In our case, they completely determine the topological type of the
bifurcation. To classify Morse fields, a cell complex (diagram) is often used, in which cells of
dimension n are stable manifolds of singular points with Morse index equal to n. We apply
this approach to the classification of vector fields of codimension one.

Without loss of generality, we assume that under bifurcation (as the parameter increases),
the number of singular points does not increase. The saddle-node bifurcation is defined by a



87

pair of cells corresponding to the singular points participating in the bifurcation. We mark
this pair on the diagram with a green arrow or a triangle. A saddle-node bifurcation in the
diagram corresponds to a point of degree 3, where two edges (half-edges) are opposite and
the third is perpendicular to them.

Then, the separatrix that connects the saddle with the node (source or sink) contracts to
a point under the saddle-node bifurcation.

We describe all possible structures of Morse flows on S? with holes using separatrix diagrams
and methods of papers [1, 2, 3, 4, 5.

Theorem 1. [6, 7| The following types of gradient bifurcations are possible on spheres with
holes:

SN — internal saddle node;  SC — internal saddle connection;  BSN - boundary saddle
node;  BDS — boundary double saddle; HN — semi-boundary saddle node (node); HS —
semi-boundary saddle-node (saddle); HSC — semi-boundary saddle connection;  BSC -
saddle connection of points on the boundary.

All possible structures of Morse flows and typical one-parameter bifurcations on spheres
with holes in which no more than six singular points are given in Table 1.

Number of points | Morse | SN | SC | BSN | BDS | HN | HS | HSC | BSC
3 on D? 2 010 0 0 2 10 0 0
4 on D? 5 210 2 0 0] 2 4 0
5 on D? 7 8 1.0 2 0 6 | 8 4 0
6 on D? 22 130 7 | 22 5 12 | 38| 6 2
4on St x 1T 2 00 0 0 0] 0 0 1
5on St x I 4 00 0 10 0] 0 2 2
6 on ST x I 14 4 2 14 6 4 |18 | 10 9
6 on Fo3 2 010 0 0 0|0 0 4

TABLE 1.1. Number of Morse flows and bifurcations on S? with holes (number
of points befor bifurcation)

In what follows, we consider arbitrary, possibly non-gradient, flows on D?. The optimal
flow is the flow that has the least number of singular points among the flows of its type.

Theorem 2. On a two-dimensional disk, there exist the following optimal codimensional one
flow structures with degenerate singularities in the interior:
SN: with a saddle knot - two (opposite);
HC: with a homoclonic cycle — two;
AN: Andronov-Hopf — two;
SL: with a saddle loop — two;
PC:with a parabolic cycle - two;
SC': with saddle ligament — six.
With singularities on the boundary, there exist the following optimal flows:
BSN: boundary saddle knot - two;
BHC: boundary saddle knot with a homoclinic boundary — two;
BDS: boundary double saddle — two;
BDSH: boundary double saddle with homoclinic boundary — one;
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HN: semi-boundary saddle node (node) - two;

HS: semi-boundary saddle node (saddle) — four;

BDN: double nod on the boundary — two;

BDNH: double node with a homoclinic boundary — two;

HSC: semi-boundary saddle connection — two;

BSC: a connection of saddles on the boundary — three.
If the boundary is a parabolic cycle:

BPC: boundary parabolic cycle — two flow structures.
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Convex bodies of constant width with exponential
illumination number

Andrii Arman
(Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada)
F-mail: andrewOarman@gmail.com

Andriy Bondarenko
(Department of Mathematical Sciences, Norwegian University of Science and Technology,
NO-7491 Trondheim, Norway)
E-mail: andriybond@gmail.com

Andriy Prymak
(Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada)
E-mail: prymak@gmail.com

Borsuk’s mumber f(n) is the smallest integer such that any set of diameter 1 in the n-
dimensional Euclidean space can be covered by f(n) sets of smaller diameter. Currently best
known asymptotic upper bound f(n) < (1/3/2 + o(1))" was obtained by Shramm (1988)
and by Bourgain and Lindenstrauss (1989) using different approaches. Bourgain and Lin-
denstrauss estimated the minimal number g(n) of open balls of diameter 1 needed to cover
a set of diameter 1 and showed 1.0645" < g(n) < (4/3/2 + o(1))". On the other hand,
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Schramm used the connection f(n) < h(n), where h(n) is the illumination number of n-
dimensional convex bodies of constant width, and showed h(n) < (1/3/2 + o(1))". The best
known asymptotic lower bound on h(n) is subexponential and is the same as for f(n), namely
h(n) > f(n) > 1.2255V" for large n established by Raigorodskii (1999). In 2015 Kalai asked
if an exponential lower bound on h(n) can be proved.

We show h(n) > (cos(m/14) + o(1))~™ by constructing the corresponding n-dimensional
bodies of constant width, which answers Kalai’s question in the affirmative. The construction
is based on a geometric argument combined with a probabilistic lemma establishing the
existence of a suitable covering of the unit sphere by equal spherical caps having sufficiently
separated centers. The lemma also allows to improve the lower bound of Bourgain and
Lindenstrauss to g(n) > (2/v/3 4+ o(1))" ~ 1.1547".

Bifurcation points in random dynamical systems

Georgii Riabov
(Institute of Mathematics of NAS of Ukraine)
E-mail: ryabov.george@gmail.com

Let (M, p) be a locally compact separable metric space. By a continuous flows of mappings
of M we will understand a family (6 ;)_co<s<t<oco, Such that

o forall s<tb,,: M — M;
e for all (s,z) € R x M the mapping ¢ — 0,,(x) is continuous and satisfies 0, s(z) = x;
o forallr <s<t0;,00.,="0,,.

If (654)—cocs<t<oo is a continuous flow of mappings of M and D = {(s,,z,) : n > 1} is
a countable dense set in R x M, then one can consider a sequence of continuous functions
D, (t) =05, +(x,), t € [sy,00), with the property

max(s,, 5m) < 5, Pp(s) = P (5) = Pulis00) = Prnlis,0) (1).

We are interested in the problem of recovering the flow (0s:)_oo<s<t<co from the sequence of
continuous functions (®,),>1, P, € C([s,, 00), M), that satisfy (1). Such problem naturally
arises in the theory of stochastic flows. For example, if 6, .(z) denotes the solution of the
stochastic differential equation

dX (1) = a(X (t))dt + b(X(£))dW (1), X(s) =z, 2)

where W is a Brownian motion and a and b are continuously differentiable functions bounded
together with their derivatives, then for all r < s < ¢t and x € M, 0,,(0,5(x)) = 0,+(x)
almost surely. However, the equality 0,, 0 0, = 0,, may not hold simultaneously for all
r < s < t. This fact limits the possibility to apply the dynamic systems technique to the
study of stochastic flows. The usual way to deal with this issue is to consider solutions of
(2) for some dense sequence of initial values (s,,z,) and define solutions for other initial
values by a limiting procedure. This strategy works well for stochastic flows of solutions to
stochastic differential equations with sufficiently regular coefficients [1]. However, a lot of
important stochastic flows are either generated by singular stochastic differential equations,
or are not generated by stochastic differential equations at all [2]. This motivates the general
question of a possibility to extend a sequence of continuous mappings (®,,),>1 that satisfies
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(1) to a continuous flow (6;;)_co<s<t<oo Of mappings of M in the sense that ®,,(t) = 0,(P,(s)),
S, < s < t.

Our main result is the following. Assume that (®,,),>; is a sequence of continuous mappings,
®,, € C([sp,00), M), that satisfies (1) and is such that the sequence ((,, ®,(5,)))n>1 is dense
in R x M, and for every compact L C R x M the set

{ @ lis.00) = S0 < 5, (5, Pp(s)) € L}

is relatively compact with respect to the topology of uniform convergence on bounded inter-
varls. Consider sets K3 = (..o {Pnlisy 1 50 < 5, 0(Pn(s),z) < €}, and let

E ={(s,z) €R x M :Vt > s K>' contains at least two distinct functions}.
Assume that F' is a closed subset of R x M, such that £ C F.
Theorem 1. Let (65;: —00 < s <t < 00) be a family of mappings of M. Define
o, =inf{t > s:05,(z) € F}.

Assume that

e for allt € (s,0%), Os4(x) € K
o if s, <s<t, then O5,(D,(s)) = O(t);
o if o5 <t, then Oy 1(050s) =0
o ift > 03, and b,,(x) € F, then there exists n >'1, such that s, < t and 05 .(x)|1,00) =
(I)n|[t,oo)-
Then for allr < s <t 054,00, =0,

We will give applications of the theorem to analogues of Arratia and Burdzy-Kaspi flows
on metric graphs.
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On symmetries of sections of convex bodies

Dmitry Ryabogin
(1300 Lefton Esplanade, Kent, OH, 44242)
E-mail: ryabogin@math.kent.edu

Abstract: Christos Saroglou and Sergii Myroshnychenko proved [1] that a convex origin-
symmetric body in R™ n > 3, with central sections having symmetries of a cube, must be a
Euclidean ball. We will discuss several results on floating bodies related to this problem.
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Fuzzy metrization of spaces of x-measures

Aleksandr Savchenko
(Kherson State University, Universyteska st., 27, Kherson, 73003, Ukraine)
E-mail: savchenko.o.g@ukr.net

In [1], a fuzzy metrization of spaces if idempotent measures is constructed. The idempo-
tent measures are known to be counterparts of the probability measures in the idempaotent
mathematics (see [4] for detailed exposition of topological aspects of idempotent measures).

Definition 1. A binary operation x: [0, 1] x [0, 1] — [0, 1] is a continuous t-norm if it satisfies
the following conditions.

(1) = is associative and commutative,

(2) * is continuous,

(3) ax1=uaforall a €0,1],

(4) a*b < c¢*d whenever a < ¢ and b < d, for each a,b,c;d € [0, 1].

Definition 2. A 3-tuple (X, M, %) is said to be a fuzzy metric space 2] if X is an arbitrary
set, * is a continuous t-norm and M is a fuzzy set on X x X X (0,00) satisfying the following
conditions for all z,y,z € X and s,t € (0,00):
(1) M(z,y,t) > 0;
(2) M(x,y,t) =1 if and only if x = y;
(3) M(z,y,t) = M(y,z,);
(4) M(x,y,t)« M(y,z,s) < M(x,z,t+ s);
(5) the function M (z,y,-): (0,00) = [0, 1] is continuous.
If (X, M, %) is a fuzzy metric space, (M, *) will be called a fuzzy metric on X.

Let * be a triangular norm. A functional ;: C'(X, [0,1]) — [0, 1] is said to be an x-measure
if the following holds (cx is the constant function with value c):
(1) pu(ex) =cfor all ¢ € [0,1];
(2) 1wl @) = (@) ® p(v);
(3) n(Axp) = Ak plp).
(Here, @ denotes the max operation.)
The spaces I*(X) of x-measures on compact Hausdorff spaces X are endowed with the
weak* topology [3].
The aim of the talk is to provide a fuzzy metrization of the spaces I*(X) on fuzzy metric
spaces (X, M, x). To this end, we identify the spaces I*(X) with subsets of the hyperspace of
X x [0,1]. Our results are analogs of those in [1].
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Continual distribution with acceleration and
condensation flows

Olena Sazonova
(V.N. Karazin Kharkiv National University, Ukraine)
E-mail: olena.s.sazonova@karazin.ua

The kinetic equation Boltzmann is the main instrument to study the complicated phe-
nomena in the multiple-particle systems, in particular, rarefied gas. This kinetic integro-
differential equation for the model of hard spheres has a form [1, 2|:

D(f) = QU ). (1)
(=4 ©)

d2
f) = 5 dvl dOé|(U—Ul,Oé)Hf(t,U;,I‘)f(t,vl,$)—
QH@[ 2/

- f(t, U1, {L')f(t, 1),.%’)]7

We will consider the continual distribution [3]:
f= /gp(t, x,u) M (v, u, @, t)du, (4)
R3

which contains the local Maxwellian of special form describing the acceleration and conden-
sation flows of a gas (is an analogue of vortices) [4]. They have the form:

3
M(v,u,z,t) = poe? (@slxt])?+2(xa) <ﬁ> * e Blo—u—lwxt])? (5)
7r
The purpose is to find such a form of the function ¢(¢,z,u) and such a behavior of all
hydrodynamical parameters so that the the uniform-integral (mixed) or pure integral re-
mainder [3, 5], i.e. the functionals of the form:

e / D(f) — QUf. f)ldv, (6)

(t,z)e]R4

A= /dt/d:z:/|D Q(f. f)ldv, (7)
R' R3
become vanishingly small.

Also some sufficient conditions to minimization of remainder A or A; are found. The
obtained results are new and may be used with the study of evolution of screw and whirlwind
streams.
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On a flower-shape geometry

Raffaella Servadei
(Dipartimento di Scienze Pure e Applicate
Universita degli Studi di Urbino Carlo Bo)
E-mail: raffaella.servadei@uniurb.it

Several important problems arising in many research fields, such as physics and differen-
tial geometry, lead to consider elliptic equations when a lack of compactness occurs. From
the mathematical point of view, the main interest relies on the fact that often the tools of
nonlinear functional analysis, based on compactness arguments, cannot be used, at least in a
straightforward way, and some new techniques have to be developed.

Aim of the talk is to present some of these techniques, which strongly use symmetry,
together with their applications to elliptic problems with a variational structure. In particular
we deal with a group theoretical scheme, raised in the study of problems which are invariant
with respect to the action of orthogonal subgroups, and we present a construction, called
flower-shape geometry, and its applications to the study of nonlinear problems set in strip-
like domains. These results appeared in a joint paper with Giuseppe Devillanova (Politecnico
di Bari) and Giovanni Molica Bisci (Urbino).

On equicontinuity of families of mappings with one
normalization condition by the prime ends

Sevost’yanov Evgeny
(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics,
Slavyansk) A
E-mail: esevostyanov20090gmail.com

Ilkevych Nataliya
(Zhytomyr Ivan Franko State University)
E-mail: i1kevych1980@gmail.com

Borel function p: R" — [0, 00] s called admissible for T', abbr. p € admT, if [ p(z)|dz| > 1
y

for each (locally rectifiable) v € I'. We define the quantity

M) = inf /p”(x) dm(zx) (1)

pcadm I’
R

and call M (") a modulus of I'; here m stands for the n-dimensional Lebesque measure, see [1,
6.1].

Givensets £ and F and a domain D in R* = R" U {oo}, we denote I'(E, F, D) the family
of all paths v : [0,1] — R” joining E and F in D, that is, v(0) € E, v(1) € F and ~(t) € D
for all t € [0, 1].
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An end of a domain D is an equivalence class of chains of cross-cuts of D. We say that an

end K is a prime end if K contains a chain of cross-cuts {o,,}, such that
1i_r>n MT(C,0m,D)) =0

for some continuum C in D. Set B" := {x € R" : |z| < 1}. We say that the boundary of
a domain D in R™ is locally quasiconformal if every point xq € 0D has a neighborhood U
that admit a conformal mapping ¢ onto the unit ball B C R™ such that p(0D NU) is the
intersection of B" and a coordinate hyperplane, see e.g. [2], cf. [3]. We say that a bounded
domain D in R™ is regular if D may be mapped quasiconformally onto a bounded domain with
a locally quasiconformal boundary. If Dp is the completion of a regular domain D by its prime
ends and gy is a quasiconformal mapping of a domain Dy with locally quasiconformal boundary
onto D, then this mapping naturally determines the metric po(p1,p2) = ‘g}ﬁ_l(pl) — g’]ﬁ_l(pg)\,
where gy is the extension of gy onto Dy. Let zg € D, g # o0, S(zo,7) = {2 € R" : |[x—x0| =7},
A= A(zg,r1,me) ={z € R": 1y < |z —x0| <12}

Let f: D — R" n>2 and let @ : R — [0,00] be a Lebesgue measurable function such
that Q(y) =0 for y € R"\ f(D). Let A = A(yo,71,72) andlet I's(yo,1,72) denotes the family
of all paths v : [a,b] — D such that

f(v) € T(S(Yo, 1), S (Yo, 72); Alyo, 71, 72))

Le., f(v(a)) € S(yo. 1), f(7(b)) € S(yo,72), and f(7(£)) € Ao, r1,72) forany a <t <b.
We say that, f satisfies the inverse Poletsky inequality at a point yo € f(D), if the relation

ML (o, 11, 72)) < / QW) "y =40 )) dim(y) 2)
FD)NA(yo,r1,m2)

holds for any Lebesgue measurable funetion 7 : (r1,75) — [0, 0o] satisfying the relation

/ () s (3)

1

We say that the boundary of D is weakly flat at a point xy € 9D if, for every number
P > 0 and every neighborhood U of the point ¢, there is a neighborhood V' C U such that
M(T'(E,F,D)) > P for all continua F and F' in D intersecting OU and 9V. We say that
the boundary 0D is weakly flat if the corresponding property holds at every point of the
boundary.

Given domains D, D’ C R™ n > 2, points a € D, b € D’ and a Lebesgue measurable
function ) : D' — [0,00] denote &,4 (D, D’) a family of all open discrete and closed
mappings f of D onto D', satisfying the relation (2) for any yo € D’, while f(a) = b. The
following statement holds.

Theorem 1. Assume that, D has a weakly flat boundary, any component of which does not
degenerate into a point. If Q € L*(D’) and D’ is regular, then any f € Gupo(D,D’) has

a continuous extension f : D — D’p, f(D) = D'p, and, in addition, a family S.4o(D, D’)
which consists of all extended mappings f: D — D'p, is equicontinuous in D.

The result mentioned above is published in [4].
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Equiaffine immersions of codimension two with flat
connection

Olena Shugailo
(V. N. Karazin Kharkiv National University, Kharkiv, Ukraine)
E-mail: shugailo@karazin.ua

We consider the affine immersions by K. Nomizu, T. Sasaki [1], namely f : (M™, V) — R""2,
For a transversal frame &;, & and tangent vector fields X, Y we have the affine analogues of
Gauss and Weingarten decompositions, namely

DXf*(Y) = f*(vXY) + ha(X’ Y)Eaa

Dx&o = (5o X) + Tf(X)&s,
where h® are components of the affine fundamental form, S, are shape operators, 72 are
forms of transversal connection (with respect to &, &).
The Weingarten mapping Sy : Q, X Tu(M™) — T,(M™) is defined [2] as follows: (£, X) —
SeX at every point x € M™ (where T,,(M"™) and @), are tangent and transversal distributions.)
For an affine immersion f : (M", V) — R™"*2 with a transversal frame {{;, &}, an induced
volume element 6 on M™is defined [1, 3, 4] as follows:

H(le ce. 7Xn) = det(f*(XO? o '7f*(Xn)7§17§2>'

The transversal distribution () with frame {&;, &} is called equiaffine if Vx6 = 0 for all
X € T,(M"™),xz € M". For two-codimension affine immersion this condition is equivalent [4]
to

H(X) +2(X) = 0.

With an equiaffine transversal distribution ) we have an equiaffine structure (V, ) on
M.

We will consider an affine immersion f : (M",V) — R"*? with flat connection V and
equiaffine transversal distribution. Two-codimensional affine surfaces with different additional
properties have been studied by many authors. Flat affine surfaces in R* with flat normal
connection were studied in [3]. The description of a parallel affine immersions (M™, V) — R
with flat connection in dependence on the rank of the Weingarten mapping were given in [2].

Let us remind that in general case (codimension k) the kernel and the image of the Wein-

k k
garten mapping is defined by ker S = [ ker S,, im S = |J im S,. We say that Weingarten
a=1 «

=1
mapping is p-dimensional if rankS := dimimS = p. It was proved [6] that for the immersion
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f:(M™ V) — R"™ (for k < n) with maximal pointwise codimension and flat connection V
the following relations hold true:

1)dimker S > n — k; 2) ker h C ker S; 3)dimim S < k;
4) if dimim S =k, then dimker S =n — k and ker h = ker S.

It was also proved [6] that the distribution S of the kernels of Weingarten mapping is
integrable on M™ and there exists a transversal distribution which is stationary along the
leaves of the foliation FS.

Since in the case of codimension two we have dimim S < 2, dimker S > n — 2, so we have
only three possible values for the dimension of im S, namely 0, 1, 2. The most studied are
affine immersions with zero and two-dimensional Weingarten mapping;

It is well known that an affine immersion with zero Weingarten mapping (S = 0) has a flat
connection and it is affinely equivalent to the graph of certain smooth map F : M™ — R?
(see for example [5, 1, 6]), i. e.

R R 7 S C T VA ol (TR 75 I il TR Vi b &

Obviously, a graph immersion is equiaffine.

According to the properties which were discussed in [6], in case dimim S = 2 we obtain
kerh = ker S and dimkerh = n — 2. Therefore such a submanifold is a submanifold of
rank two (by the rank of Gaussian (Grassmann) mapping) [7]. Rank-two submanifold is a
ruled submanifold with (n — 2)-dimensional rulings over a two-dimensional base. In case this
submanifold is a cylinder, its connection is determined by the connection of the cylinder base.
In the general case the problem on its connection remains open.

We obtain a parametrization of a submanifold with one-dimensional Weingarten mapping
and given properties. Such a submanifold is a peculiar mix” of a graph and a ruled subman-
ifold.

The main result. Let f: (M" V) — R"2 be an affine immersion with rank two affine
fundamental form, equiaffine structure, flat connection V, one-dimensional Weingarten then
there exists three types of its pammetrization'

(i) 7= g(u',..,u")d + [Plu')du' +Zual,
(i) 7= (glu?, ..., u") +ur)d + [ o ul)du? —i—Z N (W) (et duts
—’ 1
(iii) 7 = (g(u?, o, ., u™) + ub)plut) + [(v(u!) — df:; )d 1+Zu [ Ailu (ul)dul.
du
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Some vanishing theorems of sufficient character about
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spaces on the whole
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The generalized Bochner technique (see, for example, [1]) allows to broad to the noncom-
pact but compete Kahlerian spaces some well-known theorems of holomorphically projective
unique definability that have been proved previously only to the compact ones (see, for ex-
ample, [2]). In particular, the next statements are true.

Theorem 1. Complete connected Kahlerian C”-spaces K" (n > 2, r > 3) with positive
definite Ricci form don’t admit non-trivial (different from affine) holomorphically projective
mappings on the whole.

Corollary 2. Complete connected Kahlerian C"-spaces K™ (n > 2, r > 3) that have sign-
definite metric form sign of which coincides with the sign of scalar curvature don’t admit
non-trivial (different from affine) holomorphically projective mappings on the whole.

Corollary 3. Complete connected Kahlerian C”-spaces K™ (n > 2, r > 3) that have positively

definite metric form and non-positively definite on the set of symmetric tensors b form
Reoyosb® 077

don’t admit non-trivial (different from affine) holomorphically projective mappings on the

whole.

Examples of Kahlerian spaces of considered types are known. In particular, complete
connected Kahlerian C”-spaces K™ (n > 2, r > 3) of constant non-positive holomorphic
curvature with positively definite metric form satisfies conditions of the both corollaries.
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Investigation of the connection between different
models of topologies on a finite set
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One of the unsolved problems of discrete mathematics is the problem of counting all topolo-
gies on a finite set. Topologies on a finite set were modeled using various mathematical objects
(graphs, partial order relations, Boolean functions and their normal forms, (0, 1)-matrices of
a special form, etc.). In [1] topologies were studied using the topology vector, the concept of
which was introduced in [2]. In [3], in addition to the topology vector, Boolean functions and
a maximal 2-CNF were used. The question arises about the relationship between the objects
of different models, which can be used both to continue research and to verify the results.
This issue was partially raised by us in our work [5].

In this paper, we consider the connection between models in the form of (0, 1)-matrices of
a special form and in the form of ordered sets (My, M, ..., M,,) of minimal neighborhoods of
elements of a given ordered finite set X = (x1, 9, ...,x,) (using such sets, one can instantly
pass to topology vectors - ordered sets of integers ay, which were effectively used in [1,2]).

According to [4] the (0, 1)-matrix 0;j, where 1 <4, j < n, corresponds to some topology on
X (in this case, this matrix is called a grid, and its order is the order of the grid) if and only
if the following conditions are true:

1) 05 = ]_, if x; € Ej,

2) 0,5 = 0 in the other case
(Here the symbol 7; indicates the closure of a point z; in a given topology).

Let, in the i-line of the matrix g;,, = 1,04, = 1,...,04,, = 1, the other elements be equal
to zero. From gy, = 1 follows z; € T, and then M; N {z, } # @. So, z,, € M,;. Similarly,
with o;,, = Lwe get z,, € M; etc. Hence, M; DO {z;, z,,, ...,z }. On the other hand, for an
element z, from M, the inclusion z; € 7, is obvious. Then o0;, = 1. Thus, the ¢-line of the
(0, 1)-matrix corresponds to the minimal neighborhood of the element ;.

The connection found made it possible to prove some properties of networks using minimal
neighborhoods. In particular, the following properties of networks:

1)oy=1atalli=1,..n;

2) if g, = 1 and o, = 1, then o;; = 1;

3) The network o defines Tj-topology on X (is Ty-network) if and only if 0;;0;; = 0 at i # j.

Using these and other properties of networks and their connection with sets of minimal
neighborhoods (bases of topologies), we enumerate all possible networks of Ty-topologies on
a 4-element set and find the total number of Ty-topologies and the number 355 all of the
topologies on this set using the well-known formula from work [6].
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Normal subgroups of iterated wreath products of

symmetric groups and alternating with symmetric
groups

R. Skuratovskii
(Kyiv, National Aviation University, Ukraine)
E-mail: ruslcomp@gmail.com, ruslan.skuratovskii@nau.edu.ua

In this research we continue our previous investigation of wreath product normal structure
[1].

The lattice of normal subgroups and their properties for finite iterated wreath products
Spy Lo USy,,,, n,m € N are found. Special classes of normal subgroups and their orders and
generators are found. Further, the monolith of these wreath products is investigated by us.

Let k() be the number of cycles in decomposition of permutation 7 of degree n.

The number n — k(ar) is denoted by dec(r), and is called a decrement [2] of permutation 7.

As well known [2| the minimal number of transpositions in factorization of a permutation 7
on transpositions is happen to be equal to dec(m). We set dec(e) = 0. Therefore the decrement
of n-cycle is n — 1.

If w1, m € S, then the following formula holds:

dec(my - ) = dec(my) + dec(mz) — 2m, m € N, (1)

where m is number of joint simplifying transpositions in 7; and .
The trivial subgroup ofS,, we denote by E.

Definition 1. The set of elements from S, ?S,,n > 5 or n = 3 of the tableaux form:
le]1, [at, ag, ., a,)2, satisfying the following condition
> dec([ai)z) = 2k, k €N, (2)
i=1

we will call set of type A® and denote this set by E1A,. For brevity of notation this subgroup
be also denoted by AP 1t follows directly from the definition that the set of these elements
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supplemented by the operation of multiplication in the subdirect product, coincides with the
group E x (5, XS, XS, ...XS,), where subdirect product satisfies to condition (2).

n

We remind that the intersection of all non-trivial normal subgroups Mon(G) of G is called
the monolith of a group G.

Proposition 2. Flements of first type form the subgroup el A,,. This subgroup is the monolith
of S, S,.

Now we can recursively construct easiest and elegant subgroup F AP of Sp USRSy
Definition 3. The subgroup E A? be denoted by A

The order of £} ES?’ is (n!)®" : 23, Furthermore we prove that E ;ﬁ?) <1S5,05,0S,.
Let the set of elements from S, ! S, ! S,,n > 3 of the form:

le]1, [e e, ... €]2, a1, an,. .., a2l

satisfying the following condition

i dec([a;]3) = 2k, k € N, (3)

be denoted by ESZ)

Proposition 4. The set of elements of type ESQ) forms a subgroup in S, 1S, 1S,. Moreover
A% 98,08,18,.
Remark 5. We note that ES{Q’) < /TS;) The order of Ag) is (n!)”2 : 2. Furthermore /TS’) <15,
Sy LS.
Definition 6. A subgroup in S, .S, is called i: if it consists of:

1) elements of EV Ay,

2) elements with the tableau |3]| presentation [e]r, [m1,...,T,]2, that m; € S, \ A,.

One easy can validates a correctness of this definition, i.e. that the set of such elements form
a subgroup and its normality. This subgroup has structure 7,, ~ (A,, X A, X --- X A,) xCy ~

n
S,H# S, ...BS,, where the operation of a subdirect product B is subject to items 1) and 2).

n

Definition 7. A subgroup in S, ¢S, S, is of the type TVT(L‘;) if it consists of:

1) elements of the form F! E A, ,
2) elements with the tableau [3| presentation [e]y, [e...,€]a, [T1 ..., Tny Tns1 .., Tn2ls,
wherein Vi = 1,...,n: m € S, \ A,.

We define recursively the subgroup T, T(LS) having n different intervals of elements with the
same parity permutations on X?2.



101

Definition 8. The sEbgroup of S,15,1S,, having structure F/ Zﬁ is denoted by ﬁ(f’). The fol-
lowing isomorphism Tf) ~S, HBS,..BS, xS, HS,.. BHS,x.. xS, HS,...HS,, where

-~

a tuple S, B S, ... H S, repeats nntimes, holds. Thenoperation of a subdiregt product H is
determined by Definition 6.

The operation H accords with the properties described in item 1 and 2 of Definition 6, also
H is determined by automorphism in 7), ~ (A, x A, X -+ x A,) x Cy in this case.

D
n

Remark 9. Note that in 7" vertex permutation of tableau third part satisfy the condition:
elements with the tableau presentation [e]i, [e...,€]a, [m1 ..., Tp; Tni1 4o, Tn2]3, that either
all m; € S, \ A, orall [mlz € A, for 1 <i<n,n+1<i<2n,..,n>=n<i<n’

Here are the names of (almost all) predefined theorem-like environments.
Proposition 10. The subgroup E U A,, is the monolith of S, VS,.

We call level of AutX* as active if it has at least one non-trivial permutation. Denote by
AutyX* the group of all finite automorphism of spherically homogeneous rooted tree.

Proposition 11. Let H < Aut; X* with depth k then H contains k-th level subgroup P having
all even vertex permutations py; € A, on X* and trivial permutations in vertices of rest of
levels. Furthermore P is normal in W provided k is last active level of Aut;X*.

Theorem 12. Proper normal subgroups.in S, VSm (action of group is left), where n,m > 3
with n,m # 4 are of the following types:

1) the subgroups of the first level stabilizer |1, 4] are
EQ A, Ty, E1S,,, ELA,,
2) the subgroups that act on both levels are A, ;1;, Sp A\,;, A LS,
wherein the subgroup Sp A\:n ~ Sy A (S ™S, XS, ...X¥S,,) endowed with the subdirect

product [4] satisfying to condition (3), moreover Sn 1A, has two isomorphic copies, embedded
into S, 1 Sy in_ different ways.
In total there are 8 proper mormal subgroups in S, .Sp,.

Proposition 13. All normal subgroups of S, 1 (S, X Sk) can be partitioned in 2 types:

1) B2 (N; x N;), where N; < [[ 5% and N; < ] S©.
k=1 =1
2) AU(N; x N;), where A;<S,,, N; and N; are subgroups from item 1) possessing an extension

by A ina correspondent groups Sp1S,, and in S,1S,. The full list of them: S, (Sm X A}) ,
S0 (A i), St (A x 84, also A2 (S x Ar), Aut (A x Ap), At (A x S1).

We denote the set of normal subgroup of S, 1S, by N(S,1S,). Subgroup with number i
from N (S, 1S,) is denoted by N;(S,1S,).

Theorem 14. The full list of normal subgroups of S, 15,15, consists of 50 normal subgroups.
These subgroups are the following:



1) Type Togs contains: EY AV H, T,V H, where H € {A,, A2, S,}. There are 6 subgroups.

2) The second type of subgroups is subclass in Tys with new base of wreath product
subgroup Ao: E1S, 1A, E1A 1A, E N;(S,1S,). Therefore this class has 12
new subgroups. Thus, the total number of normal subgroups in Type Tyo3 is 18.

e
3) Type Tyos: A((]?(’))(nQ) =FEI1EVA,2, T2, Tn( ). Hence, here are 8 new subgroups.

4) Type Tio3: Ni(S,1S,) VS, Ni(S,1Sy) VA, and N;(Sp 0Sn) A,2. Thus, there are 29 new
normal subgroups in Tia3, taking into account repetition [5].
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Asymptotic behavior of the widths of classes of the
generalized Poisson integrals
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Let L,, 1 <p < .00, and C be the spaces of 2r—periodic functions with standard norms
| - 1lz, and ||+ ||c, respectively.
Denote by Cgp, 1 < p < o0, the set of all 27-periodic functions f, representable as convo-

lution
™

a 1
flz) = 50 + = /go(x = t)Vs(t)dt, apeR, ¢c Bg ={geLl,: |gll, <1, gL1}, (1)
with a fixed generated kernel W5 € Ly, 1/p+1/p’ = 1, the Fourier series of which has the
form

S[Wsl(t) = (k) cos (kt — ﬂ;”) . BreR, (k) >0.

A funetion f in the representation (1) is called (1, 5)-integral of the function ¢ and is denoted
by jg’gp (f = jﬁy’cp). If (k) # 0, k € N, then the function ¢ in the representation (1) is called
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(1, B)-derivative of the function f and is denoted by fg (p = fg) The concepts of (¥, B)-
integral and (v, 3)-derivative was introduced by Stepanets [1|. Since ¢ € L, and V3 € L,
then the function f of the form (1) is a continuous function, i.e. ngp C C (see |1, Proposition
3.9.2.]).

In the case S = 5, B € R, the classes C’w are denoted by Cg

For ¢(k) = k=", r > 0, the classes C’Zp and C’w’p are denoted by Wﬁfp and Wj , respectively.
The classes W} , are the well-known Weyl-Nagy classes (see [1]). In other words, W 1 <p <
o0, are the classes of 2m-periodic functions f, representable as convolutions of the Weyl-Nagy

kernels B, s(t) = Z k=" cos (kt — %’T) , 7>0, f€R, with functions ¢ € B).

If r € N and B = r, then the functions B, 3 are the well-known Bernoulli kernels and
the corresponding classes Wy , coincide with the well-known classes W, which consist of 27-
periodic functions f with absolutely continuous derivatives f*) up to (r=1)-th order inclusive
and such that || f™], < 1.

For (k) = e, a > 0, r > 0, the classes C¢p and C’g’p are denoted by C’a’; and C57,

respectively. The sets C 5, are well-known classes of the generalized Poisson integrals [1], i.e.
classes of convolutions with the generalized Poisson kernels

P,.s5(t) = Ze’a“ cos (k:t — BW) , a>0 r>0 pekR

k=1

Further, let K be a convex centrally symmetric subset of C'and let B be a unit ball of
the space C'. Let also Fy be an arbitrary N-dimensional subspace of space C, N € N,
and Z(C, Fy) be a set of linear operators from C to Fy. By Z(C, Fy) denote the subset
of projection operators of the set Z(C, Fy), that is, the set of the operators A of linear
projection onto the set Fiy such that Af = f when f € Fy. The quantities

by (K, C) = sup sup{e > 0:eBN Fy;; C K},

Fnt1

dy(K,C) = mfsup inf || f —ull,

EKUE

K,C)=inf inf ~A
AWEC) = b, uf sl = Afle,

(K, C) = %}VfAe}?ch Supr Aflles

are called Bernstein, Kolmogorov, linear, and projection N-widths of the set K in the space
C, respectively.

The results containing order estimates of the widths by, dy, Ay or my in the case of K =
C’g’p (and, in particular, W3  and C}QP) can be found, for example, in the monographs of
Tikhomirov, Pinkus, Kornejchuk, Romanyuk, Temlyakov etc.

Theorem 1. Let B ={B:}2,, 8 €R, a > 0,7 >1,n €N and be such that

(1> L, ()



104

then the following inequalities hold

1
1 —an” 27a,r,n672ar(nil)ril ’ r
ﬁe <1_ 1+ 27& 7‘n€_2ar(”—1)7'_1 < PQn(OBaQ’ C)
1 1 :
< Py, 1(C27.0) < — —an” [ —2arn™ "1 1 ’ 3
>~ 12 1( 3,27 ) ~ \/7»_[_6 ( +e < + 20[7“7’LT1>> ( )
where Py is any of the widths by, dy, Ay or Ty and

_ 1 —2a(n—1)" da e?

Ya,rn = (1 + W +e max«< e -, W g (4)

Theorem 2. Let 8= {3}, 0: €R, a > 0,7 > 1, n € N and the condition (2) is satisfied.
Then as n — oo the following asymptotic equalities hold

f%KCEQCD (1 & N
2o — an . 01 ol ar(n—1) 5
PGy 0y f = 7 T OW e ’ )

where Py is any of the widths by,dn, \xy or mn and Ya,n 1S defined by (4) and O(1) are the
quantities uniformly bounded in all parameters.

Note that the Theorem 2 complements the results of the works of Shevaldin (1992),
Stepanets and Serdyuk (1995), Serdyuk (1999), Serdyuk and Sokolenko (2011), Serdyuk and
Bodenchuk (2013), which contain exact estimates for the widths of the classes of convolutions
with classical or generalized Poisson kernels.

This work was partially supported by the Grant H2020-MSCA-RISE-2019, project number
873071 (SOMPATY: Spectral Optimization: From Mathematics to Physics and Advanced
Technology).
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An algebraic domain is a closed topological subsurface of a real affine plane whose boundary
consists of disjoint smooth connected components of real algebraic plane curves. We study
the geometric shape of an algebraic domain by collapsing all vertical segments contained in it:
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this yields a Poincaré—Reeb graph, which is naturally transversal to the foliation by vertical
lines. We show that any transversal graph whose vertices have only valencies 1 and 3 and are
situated on distinct vertical lines can be realized as a Poincaré—Reeb graph.
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The Suffridge polynomials were introduced by T. Suffridge [1] and play an important role
in complex analysis. Suffridge polynomials are closely related to the Brandt polynomials,
first mentioned in M. Brandt’s Ph:D. thesis [2] and rediscovered in [3].

The T-folded version of these polynomials were suggested in [4, 5] and several important
conjectures about them were made.

In this talk we will outline the proof of these conjectures in the particular case of trinomials

2+ azttT 4 T

A beautiful geometry behind the scenes will be illuminated.
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On K-ultrametrics and *-measures

Khrystyna Sukhorukova
(Ukraine, Lviv, Universytetska str., 1)
E-mail: kristinsukhorukova@gmail.com

The notion of K-ultrametric is introduced in [1]. A metric d on a set X is called a K-
ultrametric, where K € [0, o], if d(x,y) < K, whenever min{d(z, z),d(y,2)} < K.

Any O-ultrametric is a metric, and any oco-ultrametric is an ultrametric.

Some resent results are devoted to the K-ultrametrization of various functorial construc-
tions on the category of K-ultrametric spaces: hyperspaces, spaces of probability measures,
spaces of idempotent measurers |1, 2|.

The aim of the talk is provide a construction of K-ultrametrization of the spaces of *-
measures. Recall that a t-norm is a binary operation * on [0, 1] which is associative, commu-
tative, continuous, monotone, and 1 is a unit for it.

A functional p: C(X,[0,1]) — [0,1] is called an *-measure if

1) 4 preserves constants;

2) p(max{p,}) = max{u(p), n(¥)};
3) (A * @) = A pu(p).

It is proved that the mentioned construction determines a functor on the category of K-
ultrametric spaces and K-nonexpanding maps.
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The Iwasawa invariants of Zg-covers of links

Sohei Tateno
(Nagoya University, Japan)
E-mail: inu.kaimashita@gmail.com

In this talk, we will define the Iwasawa invariants of links and give two asymptotic formulae
for the first homology groups of Zg—covers of links in rational homology 3-spheres, which
are generalizations of the Iwasawa type formulae proven by Hillman-Matei-Morishita and
Kadokami—-Mizusawa. We will also provide examples of these formulae. Moreover, when
d = 2, considering the twisted Whitehead links, we will explain that Iwasawa p-invariants
can be arbitrary non-negative integers. This is a joint work with Jun Ueki.
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The Riemann-Hilbert problem and holomorphic
bundles framed along a real hypersurface

Andrei Teleman
(Aix Marseille Univ, CNRS, I12M, Marseille, France)
E-mail: andrei.teleman@univ-amu.fr

U™ of two closed

The Riemann sphere Pt = C U {oo} decomposes as the union Pt = U~
= S". The Riemann-

disks U~ = D, Ut = P'\ D intersecting along their boundary 0U*
Hilbert problem, as stated by Hilbert in [2, Kapitel X], asks:

The Riemann-Hilbert Problem. Let I': S — GL(r, C) be a smoothmap. Find the pairs
(Y=, Y™) of continuous maps Y* : U* — C” which are holomorphicion U* and satisfy the
condition Y+’51 = FYi‘Sl.

U
Sl

More generally, consider

(1) A representation p : G — GL(V) of a complex Lie group G on a finitely dimensional
complex vector space V,
(2) Amap I': S — G of class C* with x € [0, 0],
(3) An integer m € Z and a V-valued polynomial v € V[z]. Put d := deg(y) € Z>_;.
Regarding oo as an effective divisor on PL, y can be interpreted as an element of H°(O (doo)(d41)0e®
V). We ask:

The general RH problem on P!'. Find the space of pairs (Y ~,Y ™) of continuous maps
Y :U =V, YT U \{ec} =V
with Y~ holomorphic on U™, Y* holomorphic on U™ \ {co} such that Y = p(I')Yy, and
lim (2"T"Y (2) — 7(2)) =0

The geometric interpretation of the latter condition: Y™ extends as a section of the sheaf
O(moo) ®c V on Ut whose image in H(O(moo) 1) ® V') via the obvious morphism is
2m~%® ~. Hilbert’s original problem is obtained taking p to be the canonical representation
of GL(r,C) on C", m =0, and v = 0.

Complex geometric point of view: Consider the sheaf V' of local solutions of the RH problem
with m = ~= 0; this sheaf is given explicitly by:

_ CWnu-,v)
W <f+> € X
L")~ cow n o+, v)

frlwas = p(L) £~ lwns,
f* is holomorphic on W N U*

Theorem 1. Suppose k € (1,00] \ N. The sheaf of Op(lc—modules VY is locally free of rank
dim(V) and coincides with the apparently smaller sheaf

crwWnu-,V )
<f+> < ( X ) + fﬂWﬁS :P@)f lwns, )
/ CrWnuU+, V) f* is holomorphic on W NU
We have an obvious identification

H(O(doo) (@11)00 @ V) = H (V' (do0)(a41)00)
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so 7y gives an element v} € HO(V"(doo)(a41)00)-
Consider the short exact sequence of coherent sheaves on Pg

0 — V'((m —d—1)o0) = V!'(moo) = V' (moo)gs1)ee — 0
and the associated cohomology long exact sequence.

Corollary 2. (1) The space of solutions of the general RH problem is non-empty if and
only if the image of 2™ ¢ ® V,l; via the connecting morphism H°(V'(moo)s1)se) —
HY(V'((m —d — 1)c0)) vanishes.

(2) If this is the case, this space has the natural structure of an affine space with model
space H° (VF((m —d - 1)00)), and can be identified with the pre-image of 2™~ % ® I/,I;
via the morphism H° (V' (moo)) — HO(VF (moo) ds1)e0)-

(3) (Regularity) Any solution (Y, Y ™) of a RH problem with T' of elass C* is also of class
C" up to the boundary.

Note that, by Grothendieck’s classification theorem, V' splits as a direct sum of invertible
sheaves, so V' ~ @_, O(n;) with n; € Z and 377 nj = deg(V"). For the canonical
representation of GL(r,C) on C" we have deg(V') = — deg(det(I)).

The RH problem can be naturally generalized in the framework of Riemann surfaces as
follows: we replace Pl by an arbitrary closed Riemann surface X, the circle S' by an arbitrary
(not necessarily connected, not necessarily separating) oriented closed eurve S C X, and I" by
amap I' € C*(S,G). Let X be the Riemann surface with boundary obtained by cutting X
along S. The unknown of the RH problem associated with these data is a meromorphic map
Y )A(S \ 6)?5 --» V', which extends continuously around 8)?5 and satisfies a compatibility
condition associated with I'. In this general framework one also has a complex geometric
interpretation of the space of solutions which generalizes Corollary 2.

All these results are applications of a general gluing theorem for holomorphic bundles. The
same theorem can be used to prove an isomorphism theorem between moduli spaces of framed
holomorphic bundles [5], {1]:

Let E be a differentiable vector bundle of rank r on a closed complex manifold X, S C X
a closed, separating real hypersurface, X = X~ U X7 the corresponding decomposition of X
as union of compact complex manifolds with boundary, and E* := E|¢=.

Theorem 3. The moduli space Mg(FE) of S-framed holomorphic structures on E can be
identified with the fibre product of the moduli spaces Myx=(EF) of boundary framed (formally)
holomorphic structures on E* over the space of Cauchy-Riemann operators on the trivial
bundle of rank r on.S.

Note that Myg+(E%) can be further identified with moduli spaces of boundary framed
Hermitian-Einstein connections on ET using a version of the classical Kobayashi-Hitchin
correspondence [3] for complex manifolds with boundary [1], [6].
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About some Steiner trees

Yana Teplitskaya I
(Université Paris-Saclay)
E-mail: janejashka@gmail.com

will talk about the famous Steiner problem.
We denote by H! the linear Haurdorff measure (roughly speaking, length).

Problem 1 (Euclidean Steiner problem). Let C' be a compact subset of R?. To find a closed
S such that S U C' is connected and H'(S) is minimal.

Some properties (if H'(S) < o) hold:
e S exists;
e S contains no loops;
e only two variants of neighbourhoods for peints from S \ C;
e only two variants of a neighbourhood of a point x € §'\ C:

— a regular tripod (z is a branching point);
— a segment; = is an inner point.

e S contains at most countable number of branching points.

Usually S is usually called Steiner tree, and it is called indecomposable (irreducible,
full), when S\ C is connected. If C' is totally disconnected then S should be connected.

Theorem 2 (Paolini—Stepanov—T, 2015; Cherkashin—T. 2023; Paolini—-Stepanov 2023). There

is a compact planar set C' for which the unique solution of the Steiner problem is indecom-
posable and has infinite number of triple points.

In the theorem C' and ¥ are self-similar fractals with a sufficiently small scale factor.

QU4 Ysne
Y2 )

Yo

Theorem 3 (Basok, Cherkashin, T., 2022). In the plane for m > 4 the set of m terminals

(considered as a subset of R*™) with non unique Steiner trees has the Hausdorff dimension
2m — 1.
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The multiplicities of non-acyclic SL,-representations
and L-functions of twisted Whitehead links

Jun Ueki
(Department of Mathematics, Ochanomizu University, Tokyo, Japan)
E-mail: uvekijun460gmail.com

We briefly survey a joint work [2] with L.éo Bénard, Ryoto Tange, and Anh T. Tran, which
is a continuation of our previous work [8] (See also [6, 9, 1, 7] and [4, 5, 3]).

We consider a natural divisor on SLyC-character varieties of knots and links, given by the
so-called acyclic Reidemeister torsion. We provide a geometric interpretation of this divisor.
We focus on the particular family of odd twisted Whitehead links W5, 1, where we show
that this divisor has multiplicity two. Moreover, we apply these results to the study of
the L-functions of the universal deformations of representations over finite fields of twisted
Whitehead links.

half

" twists
L
O

FIGURE 0.1. The twisted Whitehead link W,
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Proximal connectedness. Spatially and descriptively
connected spaces

James Francis Peters
(University of Manitoba, Department of Electrical & Computer Engineering, Winnipeg,
MB, R3T 5V6, Canada and Adiyaman University, Department of Mathematics, Faculty of
Arts and Sciences, 02040 Adiyaman, Turkey)
E-mail: james.peters3@umanitoba.ca

Tane Vergili
(Karadeniz Technical University, Department of Mathematics, 61080 Trabzon, Turkey)
E-mail: tane.vergili@ktu.edu.tr

In this paper, we give results for spatially-connected spaces (X, d) [5] (a widely-considered
proximity space) and deseriptively-connected spaces (X,ds), a recent form of proximity
space [3] with a number of applications. Definition 1 is analogous to connectedness in digital

topology [2].

Definition 1. Let (X,0) be a proximity space. Then two nonempty subsets A and B are
d-connected, provided there exists a finite family of subsets {E;} , of X such that A = Ey,
B =E,, and E; 0 FE;q for all i = 0,1,...,n — 1. A proximity space (X,0) is said to be
connected, provided any pair of subsets A, B of X are d-connected.

Example 2. In Figure 1.1, let h, k : I — K be continuous maps called homotopies in a space
K. A homotopic class for different maps h (denoted by [h] = {ho, oo hi hn,l[n]} with
[n] = mod n € Z%) is a collection of A, homotopic maps that have the same endpoints,
namely, h;(0) and h;(1). The maps in [h] are spatially near. Similarly, the maps in [k] are
spatially near. However, the homotopy classes [h], [k] are spatially far. Also, from Definition 1,
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J

FIGURE 1.1. Spatially near homotopy maps in spatial far homotopy classes
(1], [K]

every pair of nonempty subsets A, B € [h] are -connected, since A 6 B. Likewise, the maps
in [k] are d-connected.

Theorem 3. Let (X, 01) and (Y, d2) be proximity spaces. Then amap f : X — Y is prozimally
continuous if and only if a pair of 01-connected subsets of X is mapped to a pair of d5-connected
subsets of Y.

Definition 4. [1] Let (X, ds) be a descriptive proximity space. Then two subsets A and B
are dg-connected, provided there exists a finite family of subsets {D;}? , of X such that
Dy=A, D, =B, and D; d¢ D;;q forall i =0,1,...,n — 1." A descriptive proximity space
(X, 00) is said to be descriptively connected, provided any pair of subsets A, B of X are
dgp-connected.

Proposition 5. In a digital topology space X, descriptively near sets in a digital image X
are descriptively connected.

Theorem 6. Let (X, dg,) and (Y, 0s,) be descriptive prozimity spaces. Then amap f: X — Y
is descriptive proximally continuous.if and only a pair of d¢, -connected subsets of X is mapped
to a pair of de,-connected subsets of Y.

Given a set X C Q x Q, a digital image on X is a map I'mg : X — R so that each picture
element p € X aka (sub)pixels or (sub)voxels has location Q x Q and value Img(p) € R.
There are two distinct type digital images, namely, frames (denoted by I'mg; or simply by
fre) which is a time-ordered sequence of images in which each frame occurs at an elapsed
time ¢ in a video, and single images (denoted by Img). The intersection of the closures of
bounded regions with nonempty interiors give rise to §-connectedness.

Definition 7. Given a digital image I'mg, two subimages A and B, are adjacent, denoted by
A § B, provided there exist pixels p € A and ¢ € B such that p = ¢ or p and ¢ are adjacent.

Definition 8. A bounded region E C fr with a non-empty interior is said to be §-connected,

K
provided for each pair of distinct voxels p and ¢ in F, there exists a finite sequence of voxels
p = vg, V1, ...,V = q such that each pair of consecutive voxels v; and v;;1 is §-connected for
K

alli=0,1,...,n— 1.



113

Proposition 9. §-connected regions are preserved under a continuous digital functions.

K

Example 10. Consider a moving object appears as a bounded foreground region recorded in
a video frame fr;. Observe that the moving object -as a bounded region- is partitioned into
(bounded) § connected subregions, which cover the moving object with a minimum number

of contractible subregions is a form of geometric Lusternik-Schirel’'mann category [4].

Spatially near subsets in a digital image (i.e., subsets that share points) reside in a discrete
proximity space.

Definition 11. For any pair of nonempty subsets A, B in a digital image Img, A is near B
(denoted by A 6 B), provided A and B have points in common, i.e., A 6 B iff AN B # 0.
Hence, 0 is a discrete proximity relation and (I'mg,d) is a discrete proximity space [6, §40.2,
pp. 266-267|.
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p-Hyperbolic Zolotarev functions in boundary value
problems for a pth order differential operator

Mikhailo Bessmertnyi
(Department of Physics, V. N. Karazin Kharkov National University, 4 Svobody Sq,
Kharkov, 61077, Ukraine)
FE-mail: bezsmermf@gmail . com

Volodimir Zolotarev
(B. Verkin Institute for Low Temperature Physics and Engineering of the National
Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine; Department of
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For the self-adjoint operator of the pth derivative, a system of fundamental solutions is
constructed. This system is analogues to the classical system of sines and cosines. The prop-
erties of such functions are studied. Classes of self-adjoint boundary conditions are described.
For the operator of the third derivative, the resolvent is calculated and an orthonormal basis
of eigenfunctions is given.
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Thinness at infinity and Deny’s principle of positivity

] of mass .
in the theory of Riesz potentials

Natalia Zorii
(Institute of Mathematics of NASU, Tereshchenkivska 3, 01601, Kyiv-4, Ukraine)
E-mail: zorii@imath.kiev.ua

This talk is based on [9], and it deals with the theory of potentials on R™, n > 2, with
respect to the Riesz kernel |z —y|*™™, a € (0,2], a < n, where |x —y| is the Euclidean distance
between z,y € R™. Denote by 9" the cone of all positive Radon measures  on R™ such that
the Riesz potential

U (z) = / & — y* du(y)

is not identically infinite on R™, which according to [5, Section 1.3.7] occurs if and only if

/ du(é/) - o
i1 [yl

Then U* is actually finite everywhere on R™, up to a set of zero Riesz capacity, cf. [5,
Section III.1.1].

The principle of positivity of mass was first introduced by J. Deny (see e.g. [2]), and for
Riesz potentials it reads as follows |3, Theorem 3.11].

Theorem 1. For any pu,v € M' such that
U < U” everywhere on R", (1)
we have pu(R™) < v(R™).

It is easy to verify that (1) can be slightly weakened by replacing ‘everywhere on R™
by ‘nearly everywhere on R™ (see |8, Theorem 2.6|, establishing the principle of positivity
of mass for potentials with respect to rather general function kernels on locally compact
spaces). Recall that a propesition P(z) is said to hold nearly everywhere (n.e.) on A C R™ if
c.(E) =0, where F is the set of all z € A for which P(z) fails, while c,(E) denotes the inner
Riesz capacity of E, see |5, Section 11.2.6].

The main result of this talk, given by Theorem 2, shows that Theorem 1 still holds even if
(1) is fulfilled only on a proper subset A of R™, which however must be ‘large enough’ in an
arbitrarily small neighborhood of cogn, the Alexandroff point of R™. This discovery illustrates
a special role of the point at infinity in Riesz potential theory, in particular with regard to
the principle of positivity of mass.

Theorem 2. Given u,v € M, assume there exists A C R™ which is not inner a-thin at
infinity, and such that

U <U” n.e. on A.
Then
H(R") < V(R").
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Recall that according to [4, 7], A C R™ is said to be inner a-thin at infinity if

> o e, @)

keN

where ¢ € (1,00) and A, := AN{r € R": ¢ < |z| < ¢**'}; or equivalently, if either A is
bounded, or z = 0 is an inner a-irregular boundary point for the inverse of A with respect
to |z| = 1. (For the concept of inner a-irregular points for arbitrary A C R" and relevant
results, see [6, Section 6]; compare with [5, Section V.1|, where A was required to be Borel.)
We emphasize that if A is not inner a-thin at infinity, then necessarily c.(A) = o0; but not
the other way around (see |7, Section 2]).

The following theorem shows that Theorem 2 is sharp in the sense that the requirement on
A of not being a-thin at infinity can not in general be weakened.

Theorem 3. If A C R" is inner a-thin at infinity, then there are pg, vy € IM' such that
Utro = U nearly everywhere on A, but nonetheless, 1o(R™) > vo(R™).

Nevertheless, Theorem 2 remains valid for arbitrary A CIR™ ence we impose upon u, v € 9T
suitable additional requirements (see Theorem 4 below).

A measure p € M is said to be carried by A C R™if R™\ A is p-negligible, or equivalently
if A is p-measurable and pu = |4, |4 being the trace of p to A, ef. [1, Section V.5.7]. We
denote by 9} the cone of all u € M™ carried by A. (For closed A, u1 is carried by A if and
only if it is supported by A.)

A measure p € M is said to be C-absolutely continuous if u(K) = 0 for every compact set
K C R™ of zero Riesz capacity. This certainly occurs if [ U*dpu is finite (or, more generally,
if U* is locally bounded); but not conversely, see [5, pp. 134-135].

Theorem 4. For any set A C R™ and any C-absolutely continuous measures ju,v € M} such
that U* < UY n.e. on A, we still have p(R™) < v(R™).

Remark 5. If AN A; = @, where A; denotes the set of all inner a-irregular points for A,
then the requirement of C-absolute continuity imposed on p and v, is unnecessary for the
validity of Theorem 4.

Remark 6. The proofs of the above-quoted theorems are based on the theory of inner a-
Riesz balayage as well as on that of inner a-Riesz equilibrium measures, both originated in
[6, 7] (see also [8]). The concept of inner equilibrium measure is understood in an extended
sense where its energy as well as its total mass may be infinite. The following two facts of
these theories are crucial to our proofs:

e A C R" is not a-thin at infinity if and only if the inner balayage of any u € M™ to A
preserves its total mass (see [7, Corollary 5.3]).

e The inner a-Riesz equilibrium measure of A C R”™ exists if and only if A is a-thin at
infinity (see [7, Theorem 2.1]).

Remark 7. The results presented in the talk have already found applications to minimum

Riesz energy. problems in the presence of external fields, see for instance [10, Section 4.10].
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3HaxoakeHHsT (popMu KBaHTOBUX rpadiB 3a yMOB
JlipixJjie Ha BUCAYNX BepIIIMHAX

Anacracig YepHuirnenko
(IliBaenHOYKpalHCHKUI HAaIOHATBHUN negarorivamit yHiBepcurer iM. K.JI. VmmucbKOrO,
Opneca, Ykpaina)
E-mail: nastya. chernyshenko120gmail. com

[Tpobirema icHyBaHHS KOCIEKTpaJbHUX (ab0 iHAKIIE 130CHEeKTPAJIbHUX ) I'padiB BUHUKIIA IIIe
y MUHYJIOMY cTOpiudi. Y KjIacu4Hili Teopil rpadiB KOCHEKTPAJHLHUMU BBAaXKAIOTH HEI30MOP-
dHi rpadu 3 omHaKOBUM criekTpoM MaTpumi cymizkaocTi (mus. [5], Posmin 6.1). YV [4] 6ys
HaBeJIEHUN TEePITUil TPUKJIAJ] KOCIIEKTPaJIbHUX Tpadis.

Y 6araThox BUIMAJIKAX OIIBIN BayKJIUBY POJIb Hi?K MATPHUIA CyMiKHOCTI Bijlirpae HOpMOBa-
Huii jramiaciad. [cHyfOTh pi3HiI O3HAUEHHS HOPMOBAHOIO JIAIJIACIaHA, KOTPHUH 1€ HA3UBAKOTH
jquckperauM samnacianom (aus. [7], C.2). Mu posymiemo 1 HOpMOBAHUM JIAILTACIAHOM Ma-
tpurgo D2 ADTY? ne A < marpung cymixuocti rpada, a D = diag{d(v),d(va), ..., d(v,)}
- MaTPHIIA CTEIEeHIB BepInuH, ge d(v;) - CTeHiHb BEPIIHHE ;.

Y Teopil KBaHTOBUX TrpadiB POBTIAIAIOTH CIEKTPAJIbHI 3a/1a4i, TOPOKEHI PIBHAHHIMN
[Irypwma-Jliysimais Ha piBHOGIuANX rpadax (MeTpuuHuX rpadax, 3 pebpamu OJIHAKOBOI JT0B-
JKUHM) 3 Kpaitoumu ymoBamu Heiimana a6o Jlipixie Ha BUCSYIMX BEPIIMHAX 1 y3arajJbHEHUMUI
ymoBamu Heiimana (ymosamu senepepsrocti i Kipxroda) y sayTpimmix seprmaax. Ty Ta-
KO2K BUHWKAE TPOOIeMa KOCIIEKTPAJILHOCTI.

VY 9] Bysi0 nokazane, 1o icHyIOTH KoceKTpaJbHi rpadu (Heizomerpuuni rpadu 3 ojHAKO-
BuM cekTpoM 3asadi [rypma-Jliysimuis) y kanTosiit Teopil rpadis. Coix 3ayBazxkuTu, 1o
y BUIAJIKY Fpada 3 HECYMIpHUMHU JTOBXKUHAMHU pedep CIIeKTP OJHO3HAYHO BuU3HAYAE (HOPMY
rpada [8].

CuexTp 3a/1a4i Teopil KBAaHTOBUX I'padiB 3B’si3aHMIT 3 HOPMOBAHUM JIATLJIACIAHOM Bi OB I-
HOT'O
KOMOIHATOpHOIO I'pada HACTYIHUM YMHOM: BJIACHI 3HAUEHHT HOPMOBAHOI'O JIAILJIACiaHa B3a-
€MHO



117

OJ/THO3HAYHO TIOB’si3aHi 3 JIPYTUMU WIEHAMHU aCUMITOTUKU BJIACHUX 3HadeHb 3aja4i [1Itypma-
Jiysimia 3 (ysaraabrenumvu) ymosamu Hefimana Ha BepimmHax 1poro rpada (mms. [3], ae
Bukopucrani pesyabratu 2], [6] Ta [1]). Le mae 3mory orpumaru iandopmariio npo dopmy
rpada KOPUCTYIOUNCh ACUMIITOTUKOIO BJIACHUX 3HAYEHD.

Hos 3amgaqi Hlrypma-JliyBiia 3 ymoamu Helimana Ha BUCAYUX BepIIHHAX I yMOBaMU
menepepsHocTi Ta Kiproda y BHyTpimuix 0y/10 10BEAEHO, MO CHEKTP OTHO3HATHO BU3HAYAE
dopMy MPOCTOTO 3BA3HOIO PiBHOOIYHOIO rpady, AKINO KiJbKICTh BEPIIUH HE IEePEBUILy€E 5 i
dopmy mepeBa, SIKIMO KiJbKICTH BEPIIHH He TTEPEBUIIYE 8.

Y naniit poboti Mu posrisigaemo cuekTpasibHy 3amady lrypma-Jliyeisig Ha mpocTomMy
3B’I3HOMY PiBHOOITHOMY Tpadi 31 cTaHIAPTHUMYE yMOBAMHU Y BHYTPIITHIX BEPIIXHAX Ta, yMO-
Bamu Jlipixsie Ha Bucsamx BeprinHax (opieHTallist pebep JIOBIIbHA):

3 yMOBaMU HEIEPEPBHOCTI

y;(0) = yi(l) (2)
Juis Beix j € W (v;), Beix k € W (v;), ne W (v;) MHOXKHMHA iHJIEKCIB pebep, sKi BXOJATD y
BepimHy v;, W™ (v;) MHOXKWHa iHIEKCIB pebep, M0 BUXOAATH 13 Bepiuau v;, yMoBamu Kipx-

roda
Yo ul= D 40 (3)
keW =+ (v;) JEW = (vs)
y BHYTpIIIHiX BepmuHax Ta ymoBamu Jlipixie
y;(0) =0 (4)
HA BUCSYIUX BEPITUHAX.
OTpumano Takuii pe3yabTar.
& oo __ S (#7100 ; _ . _
Teopema 1 Hexat cnexmp { A }72, = U1 { ' }22y 8adavi (1)-(4), craadaemvcea 3 niono
CAL00B8HOCTNET 3 ACUMNMOMUKOIO

o (k — 1 1
b 4 7T<)+fy+0<> o k€N,

& ( ) o
P e (1)
s G

2k—1 1
—v+0 ) ke N,

; k 1
\/)\,(;) = 7T—l—0<> oas 1=25,6,....,s ma k& N.
k—oo [ k

Todi us acumnmomura 00HO3HAYHO BUHAYAE PopMYy 2pada Ak NOJSITIHOT 3IPKU 3 KIALKICTNA-
MU

nepugdepuHuT pebep IHYUleHMHUL 3 HYMPiwHiMy sepuuramu m — 1 man — 1 (dus. puc.
1), de namypaavhi wucia m i N CMAHOBAZMY PO3G AZ0K CUCTNEMU DIBHAHD

€N,

k~>oo

m+n=s—1, mn= (cosyl) 2 (5)

Ia cucmema pisHaHb Mae 2 po3s’asku, Kompi 6i0N06idaomy i3omopPrum 2padam.
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m-1 n-1

Puc 1. M'pad noasiina 3ipka.

JomnoBias rpyHTY€EThCs Ha pedysbrarax crarti [10], ge, TakoxK, oTpuMasi TeopeMu, HOMIOHI
7o Teopemu 1 ayis immmux rpadis.
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sKa TOBHA $IBHO 33JlaHa MiHIMAaJIbHA MOBEPXHs € IUIomuHow. Y [2] 6ys0 BBejeHe TOHATTS
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MiHIM&JIBHOI ITOBEPXHI B CyOPIMaHOBOMY MHOTOBHJI. ¥ IOJAJIBIIIOMY TaKi ITOBEPXHI Ta IXHS
cTifikicTh BUBYAJMCS I Pi3HUX cyOpiManoBuX reomerpiit, qus. orisn y [4]. Sokpema, y [3]
OyJin OTpUMAaHI pPe3ybTaTu TUIY BepHITeiiHa, TOOTO OIKC CTIHKUX MiHIMAJIBLHUX TTOBEPXOHb,
y cybpimaHoBiit TpuBuMipHIii rpymi eitzentepra.

Cy6piMaHOBAM MHOTOBHJIOM 3BETHCS DJIAJKWH MHOTOBUI M pa3oM 3 IJIaJKUM BEKTOPHUM
posuominom H ua M (BiH 3BeThCs TOPU30OHTAIBLHUM PO3IIO/IIIOM ) 1 NJIAKUAM [T0JIEM €BKJHIOBUX
CKaJISPHUX JIOOYTKIB (-, )3, HA H (CyOpiMaHOBOIO METPUKOI). PO3riisiHEMO IIaJIKy Opi€HTOBA~
HY [IOBEPXHIO Y. y TPUBUMIPHOMY CyOpiManoBomy MHOroBuii M, cybpiManoBa Merpuka (v«
SIKOTO Oy/IyeThCs IK 0OMexKeHHs Ha H jesikol pimanoBol metpuku M. CUHTY/IgpHA MHOXKHHA,
Yo Ii€l HOBEPXHI CKJIAJIAETHCA 3 TUX TOYOK p € X, JIJId AKUX JOTUYHA IIomuHa 1,2 36iracThes
3 Hp. fAxmo N — onunuydne HOpMaJIbHE 1I0JIe Y Yy PIMAHOBOMY CEHCi, TO MOXKHO OIUCATH CHH-
IYJISAPHY MHOXKUHY K L9 = {p € ¥ | Nu(p) = 0}, ne N, — oproronasbua npoekiiist moJist N Ha
#H. Cy6pimanosa mtoma obmacri D C 3 susnauaersest sk A(D) = [ [N, |dX, ne dX — piva-
HoBa (popma momt Y. HopmasibHOIO Bapiatii€io X, o 3aaHa TJIAIKOI0 QYHKIHEO U, OyIeMo
HA3WBATH Bigobpaxennsa ¢: 3 X [ — M, mo BusHaueHe ymMoBOW ©s(p) = exp,(su(p)N(p))-
Tyr I — neaxwit okin nyna B R, a exp, — piManoBe ekcrnoHeniiiine Bigodpazkenns. [Hmmmvu
cJIoBaMH, MH OyIyeMO Bapiallifo TPaAWIiAHIM JI PIMaHOBOI TeOMETPil YNHOM, BUIIYCKAIOUN
reofiesnHi 3 TouKH p B HAIpaAMKY u(p) N (p). Tlosnaummo A(s) = [y [Ny|dEs, ne X5 = ¢4(3).
Toxi A’(0) 3Berbecs TepmIOO Bapiatiero o, mo Bianosinae @, a A”(0) — apyrotw. IToepx-
Hs Y Ha3uBa€ThCs MiHiMasbHOW, gKIO A'(0) = 0 mus 6yap-sKux HOPMAJIbLHUX Bapiaiiil 3
KOMIIAaKTHUM HoOcieM y X\ Xg. BayBazkumo, 1o TyT MU CJ/lyeMO DIMAHOBIN Tpajuilii, Ha3u-
BAIOYM MiHIMAJBHUMHY TOBEPXHIMU CTAITIOHAPHI TOYKU CyOPIMAHOBOTO (DYHKITIOHAJIA, TLIOTI].
MinimasabHa TOBEPXHs Y HA3UBAETHCs CTIKOI0, Km0 A" (0) > 0 st Oyab-sIKUX HOPMAaJIbHUX
Bapiariit 3 KoMnakTHUM HocieM y 3\ ¥o. ¥ [3]| Gyso, 30KpemMa, BCTAHOBJIEHO, IO y CyOpima-
HOBiil TpuBuMipHiit rpymi ['eitzenbepra moBHa 3B’s3HA MiHIMaJbHA ITOBEPXHS 3 ITOPOXKHBOIO
CHHTYJISPHOIO MHOXKMHOIO € CTIKOIO TOMAI i TiJTbKW TOM1, KOJIHU IId TIOBEPXHS € BEPTUKAJIHHOIO
eBKJIJOBOIO IJIOLIUHOIO.

Muorosuz E(2) BU3HAYAETHCS K YHIBepCAJbHE HAKPUTTS IPYIH BJIACHUX PYXiB IJIOIIITHU.
IIe npoctip R? 3 koopmunaTamu (x,vy,2) (ne (z,y) BiANOBiTAE MapajiebHOMY MEPEHECEHHIO,
a z — KyTy obepTaHHs), HA IKOMY CTPYKTypa rpynu JIi BusHauae HacTymHuNA 6a3uc JiBOiHBa-
PIAaHTHUX BEKTOPHUX TOJIIB:

0 0 0 0
X1 = cos z% + sinz@,Xg = @,Xg = sinz% — cos za—y

PosrastHemo na E(2) pimanoBy Merpuky g = (-,-) Taky, mo {X;, Xo, X3} € oproHopMoBannmM
6a3mMCcoM B KOXKHIHN TOUIT. 3ayBaskKUMO, IO BOHA BUIBISETHCS €BKJIITOBOI0. ¥ SKOCTI TOPU30H-
TABHOrO po31o/iny H BisbMeMmo posnosin, mo HararayTuit Ha { X1, Xo}, a y axocti (-, ), —
obmerkeHHs eBKJIioBol MeTpuku Ha H. Hexait Y Tenep — riajika opi€eHTOBaHA IOBEPXHS Y

E(2). Beemenmo nesiki jogaTkosi nosuadenns. Ha peryssipuiit wacruni 3\ Xy noBepxHi Bu3Ha-
YUMO F'OPU30HTAIHHE T'aycoBe BiIOOparKeHHS V), = % Ta XapaKTEePUCTUYIHE BEKTOPHE IT0JIE
Z, sike y KOXKMHIil TOUI[l yTBOPIOETLCS 3 V), OOEpTaHHSM Ha OpsMuil KyT y rromuni #, (B
opierrarii, mo BusHadena N(p)). [Tosnaunmo S = (N, X3) — | N, | X3 € T,X. Bekropae nose S
JIOTIOBHIOE Z 110 6a3ucy AOTUIHOIL IjIomuHu. depe3 V MO3HaYATUMEMO PIMAHOBY KOBapiaHTHY
noxinay. Hexa#t B — oneparop Beituraprena mosepxui X BiiHOCHO N, 1110 BU3HAYAETHCS JIJI

Oy1b-5KOr0 JOTHIHOrO J0 Y BeKTOpHOro moss W ymosowo B(W) = =V N.
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Teopema 1. Hexati ¥ — nosepxua y E(2). Todi nepwa nopmarvha eapiayis i naows, wo
3a0aHa YHKUIEN U, MGE HACMYNHUT 6U2AA0:

A'(0) = /2\2 INL| ™ (= (B(2), Z) + (N, X3) (V,, X3, v3)) udX.

Hxuwo ¥ MIHIMGADHG, O 0PpY2a HOPMAALHG 8aPIAULA 1T NAOWE, UL 3a0aHA GYHKUIEN U, MAE
HACTYNHUL 8UAAD:

A"(0)=/E\Z —2|Nal (B(Z), 8)* u® + 2|Na| (B(2), Z) (B(S), S) uP+

+2|Nu| (B(Z), Z) u*((B(S), S) + (B(Z), Z)) — 2(N, X3) (B(S), Z) Z(u)u+
+[Nal 7 (Z () + (N, X3) [Na| (V,, X3, Z) u)*—
—2|Nu |2 (Vy, Xs, ) — | Nu|* (V,, Xs,0)> u® dX.

P

TBepmkeuns 2. Fexaidosa naowuna y F(2) € Minimarvhoto modi G misvku modi, Koiu

Ue 20PUBOHMAABHA A00 BEPMUKANLHG NAOWUNHA. YEi MIHIMANLHE €6KA10061 naowury Yy F(2)
€ CMITKUMU.

[HmuMy mpukIa aMu MiHIMAJbHUX TMOBEPXOHB € sIBHO 3ajani y = Acosz+ Bray =z +
A(sin z+cos z)+ B, ne A, B nocriitni. HaBefieH1 mpukiia mm 1eMOHCTPYIOTh, 110 3 MiHIMAIBLHOCTI
IIOBEPXHi y pIMAHOBOMY CEHCi He BUILIMBaE 11 cyOpiMaHOBa MiHIMAAbHICTD Ta HaBnaku. bymemo
Ha3WBATU TOBEPXHIO Y. y TPUBUMIPHOMY CyOpIMAHOBOMY MHOTOBH/II BEPTUKAJHLHOIO, SKIIO
T, 1L H, nna xoxnol p € . 30KpeMa, Taki IIOBepXHi He MICTATH CHHIYIAPHUX TOYOK.

Teopema 3. Bydv-aka nosha 36’a3na 6EPpmMukaivha Minimarvha noseprua y E(2) — e
20PUBOHMANLHG €6KA1006a naowuna z = C'abo napareivho nepenecenuti Yy3008x¢ NAOULUHU
(z,y) ecmandapmnuii 2eaikoid x cosz + ysinz = 0. IIpu yvomy 2eaixoidu € necmitkumu.

3BizicH OTpUMYy€EMO HACTYITHI YACTKOBUN Pe3ysIbTaT TUILy BepHITeiiHa.

Hacainok 4. V E(2) noena 36’43na 6epMUKGALHA MIHIMAALHA NOBEPTHA € CMITKOI0 MOJI
U MiAvKu Moodi, KOAU Usi NOBEPTHA € 20PUSOHMANDHON E6KALI06010 NAOULUHOIO.
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JIBoBuUMipHI HEi30TPONHI IMOBEPXHi 3 IJIOCKOIO
HOPMAaJIBHOIO 3B’A3HICTIO i HEBUPOI2KEHUM
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MiHKOBCBHKOTO
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IlimMHOTOBHIAMYE 3 INIOCKOK HOPMAJIBHOIO 3B S3HICTIO y mpocTopi MiHKOBCHKOIO OyIeMo,
JK 1y OyJIb-SIKUX IIPOCTOPAX MOCTIHOI KPUBUHU, HA3UBATH 11 IMHOTOBUJIA 3 HYJIbOBUM TEH30-
pom ckpyTy. Taki miaMHOTOBUIM 3’ ABISIOTHCA K BaXKJINUBI HPUKAAIN Y OAraThoX JTOCTiIKe-
HHSIX, 8 TaKOXK 1 caMi BUCTYIAIOTh B SIKOCTI 06’ekTa jmociijzkenns. Hanpukiam, y podori [1]
PO3TIIAIAIOTHCA 3aHYPEHHSI, 0Opa3aMu AKUX € MOBEPXHI 3 MJIOCKOI0 HOPMAJIHHOIO 3B’ SI3HICTIO,
y poborax [2] i [3] mocaimzkeHO HBOBUMIPHI MOBEPXHI 3 MJIOCKOK HOPMAJBHOIO 3B’SI3HICTIO,
Ha SJKUX T€O/IE3NTHI MalOTh MOCTIiHY KPUBUHY 1| HOPMAJbHUN CKPYT € HYJIbOBHUM BiANIOBIITHO.
Koo 3agau nudepeniiaabaol reoMeTpil 3HAYHO POSMMPIOETHCA, KOJMMA MOYNHAIOTH BUKOPH-
CTOBYBAaTHU I'PACCMAHOBUI 00pa3 MOBEPXHi, SKWl € y3araJbHEHHSM I'ayCCOBOrO C(epUIHOro
00pa3y MOBEPXHi i BaXKJIMBOIO NEOMETPUUHOIO XaPAKTEPUCTHKOIO ITOBEPXOHL 0COOJIMBO B Ga-
TaTOBUMIPDHHMX €BKJIJOBUX Ta HEEBKJIIOBUX mpocTopax. O6’€KTOM IHOTO JTOCITIIXKEHHS € He-
i30TpOITHI JABOBUMIpHI HMOBEPXHI 3 IJIOCKOK HOPMAJILHOK 3B’ASHICTIO 1 HEBUPOIZKEHUM I'Dac-
cMaHOBUM 00pa3oM y mpoctopi MinkoBebKoro. Mu 3HAMINIIM BiIIOBiAI HA TaKi MUTAHHS: SKi
3HAYEHHS MOXKE TPUIMATH KPWBUHA TPACCMAHOBOTO 00pa3y JIBOBUMIpPHOI MOBEPXHI 3 ILJIO-
CKOIO HOPMAJILHOIO 3B’SI3HICTIO Y YOTUPUBUMIpHOMY mpocTopi MiHKOBCHKOTO B 3aJIe2KHOCTI
BiI THIy MOBepXHi Ta THIY 11 IPaCcCMaHOBOTO 00pas3y; MJis AKHX 3HaUeHb k KPUBUHU I'PAC-
CMaHOBOrO 00pa3y iCHYIOTb HMOBEPXHI 3 IJIOCKOI HOPMAJIbHOI 3B’SI3HICTIO 1 IPacCMaHOBUM
obpaszoM mocTiitHOl KpuBrHA k. B poboTi onncyroThCs BCl HEI30TPOIHI ABOBUMIPHI HOBEPXHI 3
ILJIOCKOIO HOPMAaJIBHOIO 3B’si3HICTIO ¥ IpocTopi MiHKOBCHKOTO, HEBUPOZKEHNH I'PACCMAHOBUIA
obpa3 gkux Ma€ MocTiitHy Kpusuny. loBenena

Teopema 1. Jlas mozo, wob deosumipna reizomponna nosepria V2 xaacy C* 3 naockoro
HOPMAABHOI 38 A3HicmIo Yy npocmopi Minko6cvko2o Mana HesupodHcenuli 2paccmamnosuli
06pa3 mocmitinol kpusuru k  Heobxidno U docmamrvo, 00 GOHA HAAEHCAAL O0HOMY i3
HACMYNHUL 6UJI68 NOBEPTOHY:

1) Hoseprti 3 nocmitiHo0 HYALOBOI SHYMPIUWHBOW KPUSUHO K i mouKko8010 KoposmipHi-
cmio 2;
2) linepnoseprhi MPusuMIPHUL NIONPOCMOPIE 3 HEHYALOBON SHYMPIWHBLOW KpusuHoto K .
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I'eone3unyHi BimoOpa>keHHSI CHIMETPUYHUX ITPOCTOPIB

B. Kiocak
(Onecbka nepxkaBHa akajeMis OyaiBHUIITBA Ta apxiTekTypu, Bys1. Jlinpixconas 4, Omeca,
Yxpaina)
E-mail: kiosakv@ukr.net

IIceBmopimaniB TPOCTip 3 METPUYHUM TEH30POM HA3UBAIOTH A0KAABHO. CUMETNPULHUM, KOJIHA
JIJIS KOYKHOI TOYKHU iCHYE 11 OKijI, B IKOMY CHMETpisl BiTHOCHO I1i€1 TOYKH € aBTOMOPQIZMOM
cuMBOJTiB Xpuctoders.

TeH30PHOI0 O3HAKOIO JIOKAJIBHO CHUMETPUYHUX IIPOCTOPIB (/1aJi MPOCTO CUMETPUIHUX) €
PiBHICTDL HYJIIO KOBapiaHTHOI MOXinHOl TeH3opa Pimana. BUKOpucToByoUr TEeH30PHY O3HAKY,
M.C. CuHIOKOB JIOBIB, 110 CUMETPUIHI TICEBIOPIMAHOBI TPOCTOPH, BiIMIHHI Bi/T IPOCTOPIB CcTa~
JIOT KPUBUHM, HE JIOIYCKAIOTh HETPUBIAJILHUX reojie3uunux Bimobpaxkens [1]. eit pesynbrar
baraTo paziB aybIIOBaBCS Ta y3araJbHOBaBca. OCHOBHEMUI HATIPSIMKAME y3araJ bHEHHS Oyim
mocabeH s yMOB Ha TeH30p Pimana Ta Hak/agaHHsa BUMOTH aOCOIOTHOI ApaIeTbHOCTI HA
IHTITI TEH30pH.

Hamu 3ampononoBaHo aBa criocobu creltiajizaliil IIceBI0piMaHOBIX IIPOCTOPIB 32 aHAJIOTIEI0
3 CUMETPUYHUMU TIPOCTOPAMU:

® I[IPOCTOPH, B SIKUX CIIEIiajbHI TeH30pH abCOJIIOTHO IapaJiesibHi 38 3B’ A3HICTIO ITPOCTO-
py, Ha fKiii BijmobpazkaeTbes naHuii [2];

® TIPOCTOPH, B AKUX CIIBIIAJAIOTH 3HAUEHHS KOBAPIAHTHUX MOXIIHUX, OOUUCICHUX 38
BJIACHOIO 3B’s13HICTIO [3].

B nepmomy BumagKy MpOCTOpUM HA3UBAIOTHCS CUMEMPUYHUMY BIOHOCHO 61000PaHCENHA.
Axmio 1e BiToOparkeHH TeOIe3nTHe, TO TaKi MPOCTOPU HASUBAIOTHC 2€00€3UNHO CUMEMPU-
YHUMU NPOCTNOPAMU.

IIpocTopu, sKi Bi/IIOBIAAIOTH YMOBAM JIPYroro CIOCOOY CHeliasizallil, Ha3UBAIOTHCH CUME-
MPUIHUMU NAPAMU.

BuBueni nerpusBiasbHi reojie3ntdHi BiqoOpakeHHs TaKUX IPOCTOPiB. B 000X BUIaiKax oTpu-
MaHO BHJ, JiHIMHOI (DOPMH OCHOBHUX PIiBHSIHB TEOPil I'€0Ie3NTHUX Bi00pParKeHb.

3okpema OyJI0 TOBETEHO:

Teopema 1. (2| He ienye 2eodesunro Pivuui cumempuynux npocmopie sioMiHHUL 610 npo-
cmopie Etdnwmetina.

Teopema 2. [2]| He ichye 2e00e3uno cCumMempuyHux nees0opimMaHo8UT NPOCMOPI6 8i0MIHHUT
810 NPOCMOPI6 CMan0l KPUBUHU.

Teopema 3. [3| Kootcha cumempuyuna napa ncesdopimaHosur npocmopie € Betiav cumempu-
YHOMW NAPOI0 NCEBAOPIMAHOBUL NPOCMOPIE.

Teopema 4. [3| Betiaw cumempuuna napa nce60OPIMAHOBUT NPOCTOPIE € 2aPMOHITHON Na-
PO NCEBAOPIMAHOBUX MPOCMOPIE.
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Teopema 5. [3] T'eodesuwhno cumempuuni napu MoACYMb YMEOPIOEAMU AUULE NPOCTIOPU
CMAN0E KPUBUHU.
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IIpo 3F-nianapHi Bimobpa>keHHsI IICEBI0-PiMaHOBUX 3
iHTerpoBHOIO CTPYKTypoio fAHo-Xoy-Uena

Ipuna Kypbarosa
(OHY, Ozeca, Ykpaina)
E-mail: irina.kurbatova27@gmail.com

Hocnimkyoun maitzke kortakTai Muorosuan, Kiduo, C.Xoy 1 B.Hen [1] aiiinuim 10 nons-
TTS K6adpUCMPYKMYpU, CTPYKTYpHUil adinop fKoi 3aJ0BosbHse piBHAHHEIO ¢! £ ¢ = (.

Mu Busuaemo 3F-ruianapni Bigobpaskenns [2] ncesno-pivanosux npocropis (Vi,, gij, FI') i
— _ =k _ . : .
(Vu, 945, F;) 3 iBTETpoBHOIO €pMiTOBOIO adhiHOPHOIO CTPYKTYPOIO BKa3aHOTO THITY, OCHOBHI
DiHSIHHSI SIKUX B 3arajibHill 3a BiIlOOPAYKEHHSIM CUCTEMI KOODIMHAT (') MAIOTh BUIJISII:

—=h

Tj(a) = Th(x) + > du(a)Fl (),
e

th — 6?, Fh Fh Fh Fth Fh Fth

F!'(z) = T} (x),
FIFSF)F? + FI'FX =0,
giaFja = _gjaﬂaa

F =}

ilj

=0,
FZ, F- - KOMIIOHEeHTH 06 €KTiB 38 s13n0cTi V, i V), Biamosigno; ql( ) - jesiki KoBexTopu; F -
a(blHop, <,>, < | > - smaku xKoBapianTHOI MOXizHOI B V,, i V,,.
S

Mwu noBesu, mO 3a TaKUX yMOB Ha adiHOp MiXK BeKTOpamu ¢;() € neBHUIi 3B’s30K. AHaJIi3
IBOT'0 3B’6I3KY JIA€ 3MOTY JIOBECTH, 1110 € YoTupu Tunu 3F-mianapHux BijoOpakeHb 3 epMiTo-
BOIO iHTEIPOBHOIO adiHOPHOIO CTPYKTypoio AHo-Xoy-YeHa: OCHOBHUI THII I TpU KAHOHIUYHUX.
Mu JtokJra/THO BUBUMIN OJIMH 3 KAHOHIYHUX THUIIOB , 30KPEMa PO3TJIAHYJ/INA BiTOOpasKeHHS ITbOTO
tuiy (Vi,, gij, F") ma mockuit mpocTip i 3HAMIIM METPUKH BCiX MPOCTOPIB, AKi JOMyCKAIOTH
Taki BigoOparkKeHHs, B CIIeIiaJbHIil CHCTEM] KOODIMHAT.
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Tomosioro-merpudHa Teopia (G-300pa*keHHsT UM CeJT

MuxkoJa IlpariboBuTnmii
(m.Kuis, Bys. ITuporosa, 9)
E-mail: prats44440gmail . com

Ipuna JIucenko
(m.Kuis, Bys. [Tuporosa, 9)
E-mail: iryna.pratsiovyta@gmail . com
FOsis MacaoBa
(m.Kwuis, Bys. Iluporosa, 9)
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Hexait go—dikcosane uncao 3 npomixky (053], g1 = go— 1; A = {0;1} — andasir; L =
AXAX..

Teopema 1. Jlasa 6yov—sakozo wucaa x € [0; go] icnye nocaidosniems (o,) € L maxa, wo

S k—1
— AG
T = 0101—ay + E ALg1—oy, Hgaq: - Aalag...an,..‘
k=2 i=1

[Monauus yucia z psgom (91) HasuBaeTbes Horo G-IpejCcTaBIeHHSM, a CAMBOJIYHUIN 3a1TUC
AY o, a,.. — G—300pazkennsam. Maiike Bei uncia sinpiska [0;go] (3a BEHATKOM 3utiveHHOT
MHOXKMHHI) MaloTh €auHe (G—300pazkeHHsi | Ha3MBaroTbCsd G—yHADHUME, & JHUCIa 3JI9€HHOI
BCIOJIU IIIJThHOT MHOYKMHU MAarOTh JiBa 300pazkeHHsl (BOHM Ha3uBaroThcsi G—OinapauMmn). Mae
MicIie piBHICTB: Ag...cmm(o) — Ag...cmn(o)'

Crermudianoro ocobmBicTio G—300parkKeHHsa YUCeJ € Te, IO OMepaTop JIBOCTOPOHHBOTO

scysy mudp G—300pazenns, o3uatcanii pisuicrio w(AS ,, . ) =AY .. . . emnenepepsroo
KOPEKTHO ozHaseromo dymxitieio, a imsepcop muadp I(AF ,, o..) = AF 11 asl (1 a,.. € T

HEe MOHOTOHHOO (DYHKITIEI0 HEOOMEXKEeHOT Bapiarlil.

Teopema 2. dxwo gy = +, mo mae micue gopmynra 63acmoss’szxy G-306pasicenms i xia-

27

cun020. 06ilik06020 300pasicenna AG o o =AF, . o
0, xoau oy = 0; i1, KOAU Q1 + ...+ Qu,— napHe,
ay = Q1 =
1, xoaru a; =1; 1—apt1, w®oau oy + ...+ a,— Henaphe.

Teopema 3. AHxwo gy = %, mo 0aa 6Yydb—aK020 HAMYPAADLHOZO YUCAG G TCHYE HAOTP HYAI8 Ma

n

odunuys (a1, as, ..., a,) makut, wo a = 2" + > [(—1)"19*q;2" %] = (1a; ...a,)q, de o1 = 0,
k=1

Op = Q1 + ... + ar_1, NPUNOMY MAKUT HaDOPI8 ichye pieho daa.
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Teopema 4. a) drxwo y G-306pasicenii namypasvrozo wucaa a bisvwe yugdp, nioe y G-
300pastcerHi Hamypasvrozo wucaa b, mo a > b.

6) Yucaa a = (lay...ap_11agy1...an)g b = (lay...ag_10bgi1...by) ¢ nepebysaroms y sionoweri
1) a > b, axwo op—Henapne, 2) a < b, axwo op—napne.

HomoBiib npucssiaena reomerpii G—300pazkeHHsl Yuces (reOMeTPUIHOMY 3MicTy nudpy BJia-
CTHBOCTSIM IMJIHJIPUYHUX TA XBOCTOBUX MHOMKWH) 1 pe3yJbTaTaM JIOCJiZKEHHs TOHOJIOr0—
MeTpUYHUX 1 bpakTaabHuX BiaacTuBocTeit MHOXKUH F,(a) = {z : w"(z) < a = const}, E,, =
{x 1w (x) < 2}, B[G, v, 1] = {x = AY J(x) = kh_)rgo Ear+..+ar), vo(z) = 1—vi(2)},

E[G,vi(x)] = {x : vj(x)- ue icuye}. o
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Habau>xennst ajig nmpocTopiB adiHHOT 3B ’A3HOCTI Ta
iHaAyKOBaHi BiJoOpa>keHHs

Ilokxace Cepriit MuxaiiioBu4d
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Posriisremo npoctip adinnol 38’ a3n0¢Ti 6e3 ckpyTy A,,, BiaHeceHuit 10 MOBIIBHOT cUCTEMA

koopmunatr {x! x? ... 2"}, 3 06’ekTOM 3B’sI3HOCTI FZ(I‘), My(x}) — dbikcosana Touka 1BOro
IIPOCTODY .
oG . oA i . 1,2 n\ 55 cBOIM 06
00y IyeMo HOBuUI IpocTip A,,, Biaaecenuit 1o koopauunar {y', y*, ..., y"}, 31 cBOIM 06’eKTOM
3p’szrocTi I (y), sKuMil 3a,1a€ThCs CHiBBIAHOIEH M
Pli(y) = —<R". 1o, ae Rh, = RE,(Mo) (1)
ii\Y) = 30‘(1']')197 He tiji = Aliji\Mo)-

Busuarorbkcst jieski reomerpudHi 06’ektu ipocropy A,. 30kpema, 3HaiijeHo Tenzop Pimana:

. 1
h _ h 1o} h o h
Rl = I + o (Rl Rlapie — Rl Rlan)

I1,,l
12 2
9 Yy (2)

0
3ropHYBIIM OCTAHHE CHIBBIIHOIIEHHS 3a iHAeKcamMu h Ta k, orpuMaeMo TeH3op Piddi:

~ 1 o
Rij = Rij + o (R, Rjty + Ry, Ron,)

I, 1o 3
5 Yy (3)

0
ITizpaxoBano KoMmmoneHnTu napamerpis Tomaca:
1

~ 1
Th = 3 Rl + Y (Radl + Rjﬁf)} Y. (4)

0
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KomnonenTr TeH30pa MpOEKTUBHOI KpuBUHE (TeH30pa Beiis):

~ 1 1
h h « h 1o} h
Wik =W T 5 | Flawn i = By Liar, = 7% (5)

X [(Ri Rjt, + Ry, Rats) 0 — (Rity Rity + Ry, Raty) 03] ] 419"

Hami posrasgmgaloTbes ABa mpocTtopu adinnol 3B’sa3mocTi: A, 3 06’€éKTOM 3B’SI3HOCTI F?j
(My € A,) i A, 3 06’ekToM 3B’s13HOCTI FZ Bynyrorbes ix HaOJIMKEHHS EPIIOrO IMOPSIKY —

npocropu A, i A,. Buxigni mpocTopu I0MyCcKalOTh HETPUBIiaAJbHE Te0fe3nTHe BiT0OparKeHHSs

y: A, — A, y sarambmiit cucremi xooppunar {z!, z? ... 2"}

h

< Dh _ Th = . . .
Otpumano Tensop gebopmarii P = I'}; — '} Bijobpazenis Mix TpOCTOPaMu Hab /MK EHHST:

J

~ 2 1
h __ h h . )

3’s1cOBaHO MUTAHHS BiTHOCHO BJIACTUBOCTI 1HIYKOBAHOTO BiM0OpaKeHHS 7 A, — A,.

Teopema 1. Bidobpasicenns npocmopie nabauscenns A, i Ay, axe ithdykyemubes zeodesu-
YHUM B1000PAHCEHHAM SBUTIOHUL NPOCMOPIE GPIHHOT 36 A3HOCTNI, He € 2€00€3UMHUM.
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3aKOHOMIPHOCTI KBa3i-reoge3uvyHuX BiJoOpa>keHb
y3araJibHEHO-PEKYPEHTHO-IAPAOOJIIYHIX ITPOCTOPiB

IicTpyin M.I.
(OHY, Ozeca, Ykpaina)
E-masil: margaret.pistruil@gmail.com

Posriisinemo pekypenTHo-tapatositnuii mpoctip [1], [3] (Vi, gij, F*), 3 MeTpudnuM Tenso-
. h 4 . ..
poM g;;(x) Ta adinopom F)'(x), akmit nomyckae kBasi-reomesuani Binobpazkents (KI'B) [2] na
pocTip (angijyﬁi ). Toxi B 3aranbHiil 3a BimOOpaXKeHHAM cucTeMi KoopauHaT (r') BUKOHY-
I0TBCsl OCHOBHI PIBHSHHS IAHOTO BijobOpazkenus [1]:
ik h h h
Fij(x) = Fz’j(‘r> + ¢(i(33)5j) + ¢(i($)Fj)(fL’)a
Fl =T} (),
FyF? =0,
giOAFja = _gjOzF’iaa ?iaFja = _gjaﬂa7
h h h
Eyy = By = ¢ F

i,hyj,...=1,2,...,n.
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TyT FZJ,F — KOMIIOHEHTH 00’eKTiB 3B’ai3HOCTI V,,, V,,, BinmosinHo; v;, ¢;, ¢; — HesKi KoBe-
KTODH; «,» Ta «|» — 3HAK KOBapiaHTHOI MOXi/IHOI B mpocTopax V,, V,,, BiAIOBIIHO; 1yKKaMu
IIO3HAYEHA OIlepallisi CMMeTPYBaHHS.
Hosenena [4]

Teopema 1. /[as mozo, wob pexypermro-napaboriunuts npocmip (V,, gi;, FI') donyckas ne-
mpisiasvne KI'B, neobxidno i docmammvo, wob 6 HboMY icHY6as HeocobAUSUTE CuUMEeMPUYHUTL
06141 KoBapIaNMHUl, MEeH30p Q;j, AKUL 3040060AVHAC DIGHANNAM

@ik = Aali gk + AaFf gik + AiFjk + Aj Fi, @)

ik = —a;o 7, detlfag]| # 0 (2)
npu desaxomy xosexmopi \; # 0.

[MTuranus npo icaysanus KI'B npocropy (Vi,, gij, F, ") sBoamMTBCH O MoCTiAEKeH S TudepeH-
niaJabHUX PiBHAHDL (1) BiZIHOCHO BeKTOpa \; 1 TeH30pa a;;, AKUil 3a710BOIbLHSE (2).
Mage micue

Teopema 2. Jlas mozo, w06 ncesdopimarnosuts npocmip 3 iHMmezposHoto pexypeHmHo-napabosiuHo0
empyxmyporo (Vy,, gij, Fl') donycras KI'B, neobxiono i docmamivwo, wob 3amKHena cucmema
QUPEPEHUTANOYHUT PIGHAHD Y YACNUHHUT NOTIOHUT NEPUuL02o nopadky muny Kowi eidnocho
Pynwuid a;j, A, §:

@ijk = Al Gt Aok gin + NiFje + N Fig,

9 = 2
Aij = *aaﬁRil’B — Xiqr + =&Fy,
n n

g,k = aaﬁpaﬁ = )\af]? - 2€qk7
Mana nempusianvrull poss’asok a;j(x), Ai(z) # 0 &(x), axut 3adosoavhac ymosam (2), Ao

hi . .
— epadienmnut sexmop, a;;(x) =aji(x). Tym R P, Tl eupasicaromocs wepes enympiwni

06’exmu npocmopy V,.

il 2

Jana Teopema jila€ MOXKJHUBICTH 3BecTu JocjizkenHs icuyBanus KI'B 10 cucremu, sika
MozKe OyTH PO3B’sI3aHa 3a JIOITOMOIOI0 PErYJISPHUX METOMIB Teopil AudepeHIiaJbHIX PiBHIHb.

Teopema 3. /las mozo, w06 ncesdopimarosuti npocmip 3 iHMe2posHON PEKYPEHMHO-NAPAOOAIYHON
cmpyxmyporo (V,, gijy FI') donycxase KI'B, neobxiono i docmammnvo, wob cucmema 00HOpioHuT
an2ebpaivHux PieHAHY

aOéﬁSzklj - 7
aaﬁplk + AT =0,
0p QY + M@l + €Qir =0

ma i dudepenyianvrur npodosocerns 6 (Vy, gij, FIY) mana nempusiarvnut pose’asor a;;(x),
Ai(x) #0, 5( ) arull 3a0o60avHAE YyMmo6am (2), \o I — epadienmnutl 6exmop, a;j(x) = a;i(x).

hj
Tym Szklg Zlk, Tdk, Q. Q. Qi supasicaromvca uepes enympiwni 06 'exmu npocmopy V.
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TeOpeMI/I 2 ta 3 Jo1moMararOThb IJId 6y,ZLb—HKOFO peKypeHTHo—Hapa60JquHoro IIPOCTOPY
(Vna Gijs Eh)

abo 3maiiTu Bci mnceBpopiManoBi mpocrtopu, Ha #Aki V, monyckae KI'B, abo mosectu, mio ix
Hemae. Teopemu 2 i 3 HaswBawTL pyHIaMeHTaIbHUME TeopeMmamu Teopil KI'B pekypenTHo-
1mapaboJIiTHUX TTPOCTOPIB.
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I'eomeTpist yucen y 3amadax KOHCTPYKTHUBHOI Teopil
JIOKAJIbHO CKJIQTHUX (PYHKITIN

Muxkoaa IIpamboButumit
(VIIV imeni Muxaiina Iparomanosa, IM HAH Ykpaiuu)
E-mail: prats44440gmail . com

OJsbra Bougapenko
(YIY imeni Muxaiina Iparomanosa)
E-mail: omar2011@meta.ua

Anina T'onyapeHko
(VLY imeni Muxaiina Iparomanosa)
E-masl: goncharenko.ya.v@gmail.com

Codisa Paryrmrnsk
(IM HAH Vkpainu, YV imeni Muxaiina Iparomanosa)
E-mail: ratush404@gmail. com

HemepepsHi GpyHKIIIT 3 TOKATHHO CKJIATHOIO CTPYKTYPOIO TOMOJIOTO-METPUTHOTO, IHTETPAJTb-
HO Ta JudepeHIliaJbHOro, Bapiaiifaoro Ta gpakTaabHOrO 3MIiCTY HE MOXKYTb OYTH aHAJITH-
YHO 3aJIAHMMU BUPA3aMU 31 CKIHYEHHOIO KUTbKiCcTIO OiHapHux onepariiit. [cuyoTs pi3Hi miaxoan
JI0 X BU3HAYEHHsI, 30KPEeMa, MeTOJ iTepariituux QyHkIiii, 3aganusa GYHKINT cucTeMoio pyH-
KITIOHAJIbHUX PIBHAHB, 3 BAKOPUCTAHHAM PI3HUX CUCTEM 300parKEeHHS 9MCEJ, 3 3aCTOCY BAHHSIM
[TePeTBOPIOBAYIB TP, TPOEKTYBAHHS OTHOTO 300paKeHHS B iHIIIE TOIIO.

JlomoBi1b IPUCBAYEHa JIOKAJIBHO CKJIAIHUM (DYHKI[ISM, BU3HAYEHUM HECKIHUYEHHUMU CUCTE-
MaMu PYHKIIOHAJBHUX PIBHAHB, 3aJI€>KHIM BiJl HECKIHYEHHOI KiJIbKOCTI IiiCHUX IIapaMeTpiB.
B kmaci posriisagyBanux QyHKINN Hije He MOHOTOHHI Ta Hije He mudepeHItiioBHi pyHKIIT,
GYHKIII KAaHTOPIBCBKOIO THUITY, (PYHKINI PO3MO/IIIY BUIAAKOBAX BEJMYNH, aOCOJIOTHO HEIe-
pepBHi DyHKIIT Ta CUHTYJISAPHI DYHKIILL.
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Posrusimaerbest worupu nocaigosuocti aificaux auces: (0,,), (bn), (pn), (0n), AKi Bu3HAYA-
I0Th HECKIHYEHHY cucTeMy (QYHKIIOHAJBHUX DIBHSAHD

flbn +0,2) =0, +puf(x),neZ. (1)

OcTanHsa cucTeMa € OCHOBHUM O0’€KTOM JOCIIIIZKEHHS, PE3YIbTaTaM SKOTO MPUCBIYEHA JTaHA
JIOTIOB1JIb.

Teopema 1. Axwo sukoryromvea maxi Ymosu:

1)0_,=0,>0i > 0,=1;

nez

n—1
2) bn - bn—l + Gn—l - E @Z;
3) Il <1, Xpi=1;

1=€Z

n—1
4) Op = 0p_1+Pn-1= Z pi > O;

i=—00

mo cucmema (1) mae y xaaci nenepepenuxr Gynryil, susnavenu® wa 6idpisky [0; 1], edunui
D038’°A30K.

BayBaxkenns 2. Jlaui BBaxkaerbcs, mo ymoBu 1) — 4) jia GbyHKIHT f, M0 3a/10BOJILHSIE
cucremy (1), Bukonyorbes. ko p; = O; auist 6yup-sikoro ¢ € Z, 1o f(z) = .

Teopema 3. xwo ceped waenie nocaidosnocmi (p,) wemae 6id°emnux esemernmis, mo f —
Pyrruin posnodiay na eidpisky [0;1].

Teopema 4. frxwpo icnye p; = 0, mo wmipa Jlebeza mrodtcunu necmanrocmi (mobmo donosre-
HHA 00 00’ €ONaHHA THMEPBAAIS CMANOCTEL) PiBHa HYA0, a omoice, [ € dynkyicto Kanmopie-
CcbK020 MUNY.

Teopema 5. fxwo f(x) — Pynruia xanmopiscokozo muny, a X — 6unadkosa 6eAuYUHA,
pisromipro poanodiaena na [0; 1], mo sunadkosa seavuunaY = f(X) mae wucmo duckpemmui
P03N0JiA.

Teopema 6. Srxwo ceped waenis nocaidosnocmi (py,) ichytomos 6id’emmi wucaa, mo f € Pym-
KULEI HEOOMEIHCEHOT 8aPLanil.

Teopema 7. dkwo ceped wienis nocaidoshocmi (p,) HEMAE HYAIS, ane € 60 €EMHL YUCAA, TO
dynuryin f € nide He MOHOMOHHON.

Teopema 8. frwo ceped uaenis nocaidosnocmi (py,) ichyromos 610 emni wucaa i wyai, mo f e
Pynryiero neobmescenol sapiayit, AKa He MAE NPOMINCKIE MOHOMOHHOCTT 304 BUKAIOUYEHHAM
NPOMIHCKIB CTNANOCTN.

Jlema 9. I'pagix 'y dynxuyii f e cmpyxmypno dpaxmanvroro mroorcunoro, a came N -
CAMOAPIHHOIO MHONCUHON 3 HACMYNHONW CMPYKMYPOI CAMOAPIHHOCTII:

I/ = @Zl' + bl’,

i=—00
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Teopema 10. Mae micue pisnicmo

> 0i6;
/f 11—62591191
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Po3B’a30k 3amaui Koamoroposa-Hikosibcbkoro maJisi
iHTeproagiinaux moJiinomiB Jlarpanska Ha KJjacax
y3arajibHeHuXx iHTerpaJiiB Ilyaccona
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E-mail: stepaniuk.tet@gmail.com

Hepes Cy, a >0, 7 >0, B € Ry 1 < p < 00, HOZHATMMO MHOKUHY 27—TIePiOMTHIX

dyukuiit f(x), gxi npu Beix © € R MOXKHA IPEJCTABATH Y BUIVIAI] 3rOPTKA

a 1 T
f@) =G+ [ Parala~ 00 a0 € RS9 L1, ¢ Ly b2l ()

—T

3 dJpaMy BULJIALY

o,
_ pr
Prpt) = Ze o cos (kt — 7), a,r>0, BeR.
k=1
@yukuio [y piBuaocti (1) HaZuBaTh y3arajbHeHuM iHTerpajoM Ilyaccona dyHKIl ¢ i mo-
3HAYAIOTH 1EPEe3 jg”'(p, 3 iHmoro 60Ky dyHKI0O ¢ y piBHOCTI (1) HA3WBAIOTH y3araabHEHOO
. oo . o,T ,T
noxignoto bynxmii f i mosmavaioTs wepes fg (Tobro, p() = f5(+)) [1].
Mot 6ynp—sikol dyukuii f(x) i3 npocTopy HemeppBHux 2r—Tepioguanux ¢yukiin C' gepes
Sn_1(f; x) Gymemo nO3HAYATH TPUTOHOMETPUIHUI TTOJIHOM MOPSAJIKY 1 — 1, IO IHTEPIIOJIIOE

f(z) y Bysmax xfcnfl) = 22::, k € Z, TobTo Takuii, mo
Suca(fray ™) = fa™V) k=0.1,..20 2. (2)

Hosiromu S, - 1(f; ) oHO3HAYHO 3a/1A10THCs IHTEPHOISAIIHHIMI yMOoBaMuU (2) 1 HA3UBAIOTHCS
IHTepIOIANiiHIMY TToTiHOMaMu Jlarpam:xa.
Mosnaqunvo yepes p,(f;-) Biaxunenns Big Gyukuii f € C i1 iHTepnosniiiHoro nosinoma
Jarpamxa S,_1(f;-) )
ﬁn(f;x) = f(ﬂ?) - Snfl(f;l’)'
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Mera HaIoro JOC/iKEHHS TIOJIIrae B ToMy, 1106 npu Beix © € R, a > 0, S € R, r € (0,1)
il < p < oo, 3naiiTu po3p’sa30K 3amadi Koamoroposa-HikoabChKOTO JIst iHTEPITOAIITHAX
nostinomis Jlarpanxka S, _1(f; ) Burusny (2) Ha Kiacax ysarajbHenux inrerpatis I[lyaccona

g’;, TOOTO BCTAHOBUTHU ACUMIITOTUYHI TIPU 1 — OO PIBHOCTI JIJIS BEJIMIUH

En(Chpim) = sup |pu(fi2)]. (3)
fecgy
Mag wmicie HacTyIIHA TeOpeMa.

Teopema 1. Hexatt r € (0,1), « >0, f € R, 1 < p < o0 ix € R. Todi npup =1 i
n > n.(a,r1)

= " 2n —1 2 1 1
QT _ _—an”, 1—r|_.: * A
En(Cgsa) =€ " n " Isin 5 az' <7r0z7“ + 054 <n1’“ - (ow*)%ﬂ)) ; (4)
npu 1 <p<ooin>n.a,rp)
~ T, o —an” 1—7 . QTL - ].
En(Cypia) =e " nw |sin 5%
=
2| cost|ly 1 (1 3—p 3 § 1 v
Mﬁ' <,p;;1) O RS o . (5)
T (ar)r 22 2 =1 Jnw (ar)Fenr
anpup=o00in>n.ar o)
. olhom—1 (8 a7
Enl 5”00;3:) =e sin 5 T (P In - + 5n700) ) (6)

V dopmyraz (4)~(6) daa sesuwun 8, , = 0% (a,r, 5, x) suronyemvca ouinra |0}, | < 407

Ouinku (4)—(6) ZEMOBHIOIOTH pedynbraT podit [2]-[4], ge Oymo 3Haiimeno po3B’s30K BKa-

a,r

3anol 3a/a4i Koamoroposa-Hikosbebkoro na kinacax Cy)) npu Beix r > 1, a > 0, b eRi
1 <p< oo
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IIpo Hu>KHIO OIIiIHKY JiamMeTrpa obpa3y Kpyra

Irop IleTkoB
(Hamjonasbuuii yHiBepcuTeT KopabseOymyBanus im. aamipana Makaposa, Mukosais,
Yxpaina)
E-mail: igorpetkov830gmail.com
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Mapisa Credanuyk
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Hexait 3agano cim’to I' kpuBux v B komiutekcHiit momuai C. Bopenesy dyukiio p : C —
[0, 00] HasuBatoTs donycmumoro na T, mumyTs p € adm T, akmo. [ p(z)|dz| = 1 gns xoxmOl

5
kpusoi v € I'. Hexaii p € (1,00). Toxi p-modyaem cim’i I'"HasuBaeTbcs BemanHa

M,(I') = inf / PP(z) dxdy .

pEadmT’

st mosineanx muoxkuu E, F, i G B C, wepes A(F, [';G) noznaunmo ciM’1o BCiX KpUBUX
v : [a,b] = C, ski 3’ennytors E i F B G, 1060 Y(a) € E, v(b) € F'iv(t) € Gupna <t <b.
IToxmamemo

A(zg,m1,m) ={2 € C:r < |z — 2| <12},
S; = S(z0,1) ={2€C:|z—2|=r}, i=12

Hexait D — obuacts B KoMmtekcHiit mronmui € ta @ : D — [0, oo] — BumipHa 3a JleGerom
dyukiisa. Bynemo ropoputn, mo romeomopdiszm f : D — C e xinvuyesum Q-20meomopdhiamom
81OHOCHO P-MOOYAA 8 MOuYL Zg € D, IKITO CIiBBiTHOIIICHHS

M, (A(ES:, £S5 /D) /@ (12 — z0f) dedy

BUKOHYETHCsL U1 By 1b-gKOoro Kiabiig A = A(zg,7r1,72), 0 < r; < ry < do, dy = dist(zg, D), i

T2
I KOXKHOT BUMIpHOT yHKIil 7 @ (11, 79) — [0, oo] TaKol, I10 f n(r)dr = 1.
Bcromu masti Gymemo BBazKaTH, IO ¢, (T f Q(z |dz| — cepeJHE iHTerpaJibHe 3Ha-
S (20,7)

yens GyHKIL Q) o kory S(zp,7) ={z € C: ]z — zo| = r}.
Hu>xde HaBeseHo TeopeMy Mpo HUKHIO OIIIHKY JiiamMeTpa o0pa3y Kpyra.

Teopema 1. IIpunycmumo, wo Q: C — [0,00] — eumipra 3a Jlebezom Pynruis maxa, wo
cepedne inmeepasvre 3HaMeNHA ¢y (T) ckinvenne das m.e. v > 0. Hexatd f : C - C —
Kiavuesutl (QQ-20Meomopdiam GI0HOCHO P-MOOYAL 8 MOWUTL Zg NPU P > 2, de 2y — JeAKra MmouKa



6 C, ro > 0. Todi drs 6ydv-axozo R > ry suxonyemwvea ouinka

NI -
b t71 g ' (1)

0

de B(zp,R) ={z € C: |z — 2| < R}.
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