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Finitely bi-Lipschitz homeomorphisms between Finsler manifolds

Elena Afanas’eva
(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, 1 Dobrovol’skogo St.,
Slavyansk 84100, Ukraine)
E-mail: es.afanasjeva@gmail.com

In this talk we investigate the boundary behavior of finitely bi-Lipschitz homeomorphisms between
Finsler manifolds. Our study involves the module technique and classes of mappings whose moduli of
the curve/surface families are integrally controlled from above and below. The Lusin (N)-property
with respect to the k-dimensional Hausdorff measure for the finitely bi-Lipschitz mappings is also
established. The talk is based on a joint work with A. Golberg; see [1].

Let M be an n-dimensional differentiable manifold, n > 2. By the differentiability we mean C'°°—
differentiability. For a point x € M, T, M denotes the tangent space at xz, and TM := UgemT,M
is the tangent bundle. The Finsler manifold is a differentiable manifold M equipped the Finsler
metric ®(z, &) : TM — R satisfying the conditions:

(i) regularity: ® € C*° on TMy := TM \ {0};

(i) positive homogeneity: ® is positive homogeneous that is ®(x,af) = a®(z,§) for all positive
a € R and ®(x,&) > 0 for £ # 0;

(iii) the Legendre condition or strong convexity condition: g;;(z,§&) = %di}qgjng) is positive definite
whenever £ # 0.

Following [3], an element of volume on the Finsler manifold is defined by dog(z) := ig;} dzt...dz™,

where |B"| denotes the Euclidean volume of the unit n-ball whereas |B| is the Euclidean volume

of the set B} = {(51, HEM)ER: D (x, Z(fi,ei(m))) < 1} with an arbitrary basis {e;(z)}?_; in
1

R™ depending on z.
Suppose that D and D’ are two domains on M and M/, respectively, f : D — D’ is a continuous

mapping. Let L(z, f) = limsup,_,, %W, r € D and l(z, f) = liminf,_, W.
Following [2], we say that f : D — D’ is finitely Lipschitz if L(x, f) < oo for all z € D and finitely
bi-Lipschitz if
0<l(z,f)<L(z,f) <o

for all z € D.
A Borel function p : Ml — [0, o] is called admissible for the family I" of k-dimensional surfaces S
inM, k=1,...,n—1, (abbr. p € admT), if

/pdeq>z1, VSerl. (1)
S

Following |2], the function p : M — [0, co] measurable with respect to the measure of a volume o is
called extensively admissible for a family I' of k-dimensional surfaces S in M (abbr. p € extadmT),
if the admissibility condition (1) holds for almost all (a.a.) S €T
The conformal module or module (called also the conformal modulus) of a family I" of k-dimensional
surfaces in D is defined by
M(T) = inf / () doo (@),

pcadmI’
D

where D is a domain in M.



Let @ : M — (0,00) be a measurable function. A homeomorphism f : D — D’ is called lower
Q-homeomorphism at a point xg € D, if there exists &y € (0,d(xg)), d(xo) := sup de(z, 7o), such
eD

X
that for any g9 < dp and any geodesic rings A. = A(xp,e,60) = {x € M : ¢ < do(x,20) < 20},
e € (0,&0), the inequality

M) =t [ 2 &)
T p€extadm X Q(I‘)
DnNA.

holds. Here ¥ stands for the family of all intersections of the geodesic spheres S(xg.7) = {z € M :
do(x,x0) =1}, € (€,80), with the domain D. We say that the homeomorphism f : D — D' is a
lower Q-homeomorphism in D, if f is lower Q-homeomorphism at every point xg € D.

For sets A, B and C, we denote by A(A, B;C) the set of all curves v : [a,b] — M, which join A
and Bin C, i.e. vy(a) € A, v(b) € B and «(t) € C for all t € (a,b).

Let @ : M — (0,00) be a measurable function. We say that a homeomorphism f : D — D’ is
ring Q-homeomorphism at a point xq € D, if

M(AUE)HE) D) < [ Qla) n (dalaan)) doola) (3)
DNA.
holds for any geodesic ring A, = A(xo,€,£0), 0 < € < g9 < 00, any two continua (compact connected

sets) K C B(xg, e) N D and Ky C D\ B(xo,&0) and each Borel function n : (g,&9) — [0, 00|, such
€0

that [n(r)dr = 1. We say that f is a ring Q-homeomorphism in D, if (3) holds for all points
3

Zo € D. o

Recall that a metric space M is called hyperconvezr if NoepB(xa,70) # 0 for any collection of
points {Zq }aea in M and positive numbers {rq }oea such that d(zq,2z3) < rq +rg for any o and g
in A.

The main result of talk is following

Theorem 1. ([1]) Let D and D' be two domains in Finsler n-dimensional manifolds (M, ®) and
(M, @), respectively, n > 2, and let M be a hyperconver space. If f : D — D' is a finitely bi-
1

Lipschitz homeomorphism then f is both lower Q-homeomorphism with QQ = KI"f1 (z, f) and ring
Q+«-homeomorphism with Q. = C - Ky(z, f), where K[(x, f) € L} . stands for the inner dilatation
of mapping f, and C is a constant arbitrarily close to 1.
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About longest and shortest chords passing through a fixed point

Aliyev Yagub
(ADA University, Ahmadbey Aghaoglu str. 61 Baku, 1008)
E-mail: yaliyev@ada.edu.az

A new method to construct a tangent to the conchoid of Nicomedes or limagon of Pascal curves
is discussed. Some interesting properties of the cardioid curve (which is a special case of limagon of
Pascal) are investigated. The following problem is studied: “Given a line k and two points A and
B on one side of k, find point C' such that the sum of lengths of segments C'D and C'E is minimal,
where D and FE are intersections of line k with lines CA and CB, respectively”. This problem is
dual to the classic problem to find shortest segment inscribed to a given angle and passing through a
given point. Part of this problem was solved and the remaining part is left as an open question. The
problem to find ellipse’s longest or shortest chord passing through a given point, is also considered.
For the solution the curve named as ophiuride is used.

The following Lemma is used.

Lemma 1. Let ¢; and co be two arbitrary smooth curves. Let O be a given point and let o line
through this point intersect the curves c1 and co at points A and B. If the length of segment AB is
mazimal/minimal or constant and the tangents to the curves ¢; and cy at points A and B are not
perpendicular or parallel to the line AB then these tangents intersect at a point C such that for the
perpendicular CD of the line AB the equality |OA| = |BD| holds true.

REFERENCES

[1] Anghel N., On the constructability with ruler and compass of a minimum chord in a parabola, Libertas Math. 17,
9-12 (1997).

[2] Anghel N., Geometric loci associated to certain minimal chords in convex regions, J. Geom. 66, No.1-2, 1-16
(1999).

[3] Anghel N., Minimal chords in angular regions., Forum Geom. 4, 111-115, electronic only (2004).



Some equivariant properties of Milnor’s construction

Sergey Antonyan
(National University of Mexico, Ciudad Universitaria, Mexico City)
E-mail: antonyan@unam.mx

In 1953 John Milnor, for a topological group G, introduced the notion of an infinite join £q =
GG *.... This space possesses a natural action of the group GG under which it becomes a universal
principal G-fibration. The orbit space Bg = E¢g/G is well known as a classifying space. In this
talk I will present a more transparent approach to constructing of F¢ that will allow us to show
that the natural action G ~ FE¢ is proper in the sense of R. Palais whenever G is a locally compact
group. As a result we obtain some new equivariant properties of this classic space. Similar research
is carried out for the complete infinite join EG (which is the completion of Eg with respect to a
suitable metric) introduced in 1992 by T. Banakh.



Commuting sets for topological set operators

Kateryna Antoshyna
(National University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv, 04070, Ukraine)
E-mail: akaterink@ukr.net

Sergiy Kozerenko
(National University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv, 04070, Ukraine)
E-mail: kozerenkosergiyQukr.net

Let X be a set and F,G : 2¥ — 2% be two set operators on X. We say that a set A C X is
commuting set for the pair F,G if F(G(A)) = G(F(A)).

For a topological space X commuting sets for the pair of set operators Cl, Int were characterized
by Levine [2] as symmetric differences of clopen sets with nowhere dense sets. Similarly, Staley |3]
obtained a criterion for commuting sets for the pair Int,d (here 9 denotes the topological boundary
operator).

In this work we consider the following six set operators on a topological space: CI, Int, 0, Ext
(the exterior of a set), * and +: A* = A\IntA, AT = ClA\A (these two operators were explicitly
defined and studied by Elez and Papaz [1]). It is possible to obtain characterizations of commuting
sets for each pair of these six operators. As an application of these characterizations we present
new criteria for the following well-known classes of topological spaces:

e nodec: a space in which every nowhere dense set is closed;

e cxtremally disconnected: a space in which the closure of every open set is also open;

e strongly irresolvable: a space in which each open subspace is irresolvable (i.e. it cannot be
expressed as a disjoint union of two dense sets);

e perfectly disconnected: a Ty-space in which any pair of disjoint subsets have no common
limit points.

Theorem 1. Let B be a clopen set and C be a nowhere dense set. Then the symmetric difference
BAC is a commuting set for the pair Cl,* if and only if BN C is closed.

Corollary 2. A space is nodec if and only if any commuting set for the pair Cl, Int is also a
commuting set for the pair Cl, *.

Proposition 3. Let X be a space. Then:

(1) X s extremally disconnected if and only if any open set is a commuting set for the pair
Cl, Int;

(2) X s strongly irresolvable if and only if any nowhere dense set is a commuting set for the
pair Cl, Int.

Corollary 4. A space is extremally disconnected and strongly irresolvable if and only if any set is
a commuting set for the pair Cl, Int.

Proposition 5. A space is perfectly disconnected if and only if any set is a commuting set for the
pair Cl, *.

REFERENCES
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Asymptotic analysis of quasi-regular mappings in space

Boris N. Apanasov
(Univ of Oklahoma, Math Dept, Norman, OK 73019, USA)
E-mail: apanasov@ou.edu

Dedicated to the memory of Yuri Yu. Trokhymchuk

We investigate quasisymmetric embeddings of a closed 3-ball inextensible in neighborhoods of any
boundary points and bounded quasiregular locally homeomorphic mappings in 3-space, especially
their behavior in the unit 3-ball and their asymptotics while approaching the boundary of the unit
3-ball(cf. [12], [14], [7], [16], [17])-

We discover several new properties of such mappings in 3-space. Such discoveries are based on
our construction of a new type of bounded locally homeomorphic quasiregular mappings in 3-sphere
(and in the unit 3-ball)- see [6]. It addresses long standing problems for such mappings, including
M.A.Lavrentiev problem, Pierre Fatou problem and Matti Vuorinen injectivity and asymptotics
problems (cf. [7]). The construction of such mappings comes from our construction of non-trivial
compact 4-dimensional cobordisms M with symmetric boundary components and whose interiors
have complete 4-dimensional real hyperbolic structures (cf. [4]). Such bounded locally homeomor-
phic quasiregular mappings are defined in the unit 3-ball B®> ¢ R? as mappings equivariant with the
standard conformal action of uniform hyperbolic lattices I' C Isom H? in the unit 3-ball and with its
discrete representation G = p(I') C Isom H? (cf. [6]). Here (i is the fundamental group of our non-
trivial hyperbolic 4-cobordism M = (H* U Q(G))/G and the kernel of the discrete representation
p:I' = G acould be a free group F,,, on arbitrary large number m generators.

Such discrete non-faithful representations of hyperbolic lattices with arbitrarily large kernel were
known only for non-uniform case due to the W.Thurston’s non-rigidity theorem (Dehn surgeries
on cusp ends of non-compact hyperbolic 3-manifolds). We are able to present our construction for
uniform (co-compact) hyperbolic 3-lattices based on a new effect in the theory of deformations of
hyperbolic 3-manifolds/orbifolds or their uniform hyperbolic lattices I' C Isom H? (i.e. in the Te-
ichmiiller spaces of conformally flat structures on closed hyperbolic 3-manifolds -cf. 1, 2]). We show
that such Teichmiiller space or the corresponding variety of conjugacy classes of discrete represen-
tations p:I" — Isom //* may have connected components whose dimensions differ by arbitrary large
numbers -cf. [3, 5|. This is based on our enhancement to the conformal category of the Gromov-
Piatetski-Shapiro interbreeding construction [13| and our construction of non-trivial "symmetric
hyperbolic 4-cobordisms" [8].
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[5] Boris Apanasov, Group Actions, Teichmiller Spaces and Cobordisms. - Lobachevskii J. Math., 38, 2017, 213-228.

[6] Boris Apanasov, Topological barriers for locally homeomorphic quasiregular mappings in 3-space. - Ann. Acad.
Sci. Fenn. Math. 43, 2018, 579-596.

[7] Boris Apanasov, Hyperbolic topology and bounded locally homeomorphic quasiregular mappings in 3-space. -
(Bogdan Bojarski Memorial Volume), J. Math. Sci. 242, 2019, 760-771 (YkpaiucbKuii MaTeMaTU9IHUI BiCHUK
Tom 16 (2019), Ne 1, 10 — 27)

8



(8]
[9]

[10]

[11]
[12]
[13]
[14]
[15]

[16]
[17]

Boris Apanasov, Non-faithful discrete representations of hyperbolic lattices, hyperbolic 4-cobordisms and applica-
tions. - Preprint, Univ. of Oklahoma, 2020, 25 pp.

Boris Apanasov, Uniform Hyperbolic 3-Lattices, Hyperbolic 4-Cobordisms, and Discrete Representations with
Arbitrary Large Kernels. - Vitaly S. Makarov Memorial Conf., Steklov Math. Inst. RAN, August 2020.

Boris Apanasov, Conformal interbreeding, Teichmiller spaces and applications. - Topology and Geometry: Ex-
tremal and Typical (Univ. of Chicago and Univ. of California at Santa Barbara, May 2021), Preprint, Univ. of
Oklahoma, 2021, 23 pp.

Boris N. Apanasov and Andrei V. Tetenov, Nontrivial cobordisms with geometrically finite hyperbolic structures.
- J. of Diff. Geom. 28, 1988, 407-422.

K. F. Barth, D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math.
Soc. 16, 1984, no. 5, 490-517.

Mikhael Gromov and Ilia I. Piatetski-Shapiro, Non-arithmetic groups in Lobachevsky spaces, Publ. Math. IHES
66, 1988, 93-103.

W.K.Hayman and E.F. Lingham, Research problems in function theory. - ArXiv: 1809.07200

Mikhael A. Lavrentiev, On a class of continuous mappings, Mat. Sbornik, 42, 1935, 407-424. (in Russian).
Seppo Rickman, Quasiregular Mappings. - Ergeb. Math. Grenzgeb. 26, Springer, Berlin—Heidelberg, 1993.
Matti Vuorinen, Conformal geometry and quasiregular mappings. - Lecture Notes in Math 1319, Springer,
Berlin-Heidelberg, 1988.



Generalized (o, 7)-derivations on associative rings satisfying certain
identities

Mehsin Jabel Atteya
(Department of Mathematics, College of Education, Al-Mustansiriyah University, Baghdad, Iraq)
E-mail: mehsinatteya88Qgmail.com

The commutativity of associative rings with derivations have become one of the focus points of

several authors and a significant work has been done in this direction during the last two decades.
It represents the answer to the natural questions of Ring Theory which reach to determine the
conditions implying commutativity of the ring. Basically, the study of derivation was initiated
during the 1950s and 1960s. Derivations of rings got a tremendous development in 1957, when
Posner [1] established two very striking results in the case of prime rings. A considerable amount
of work has been done on derivations and related maps during the last decades (see, e.g., |2,3 and
4] and references therein).The main purpose of this paper is present results concerning generalized
(o, T)-derivations via associative rings. Accurately, we prove the commutativity with other cases of
a ring that satisfied certain conditions. These results are in the sprite of the well-known theorem
of the commutativity of prime and semiprime rings with generalized derivation satisfying certain
polynomial constraints. Throughout this paper, R always represents an associative ring and Z(R)
is its center. Let o and 7 be two mappings from R to itself. For any z,y € R we write [z, y] (o,r) for
the commutator zo(y) — 7(y)z and (z o y) 4, for anti-commutator zo(y) + 7(y)z.
Recall that R is semiprime if aRa = 0 implies ¢ = 0 and R is prime if aRb = 0 implies a = 0
or b = 0. Every prime ring is semiprime ring but the converse is not true always. An additive
mapping d : R — R is said to be an (o, 7)-derivation of R if d(zy) = d(z)o(y) + 7(x)d(y) holds
for z,y € R. Let 0 and 7 be endomorphisms of R. An additive mapping D : R — R is said to be
a generalized (o, 7)-derivation of R if there exists an (o, 7)-derivation d : R — R of R such that
D(zy) = D(x)o(y) + 7(x)d(y) for all z,y € R.

Theorem 1. Let R be a mon-zero semiprime ring with nonzero commutator, ¢ and T be auto-
morphsim mappings. If R admits a generalized (o, T)-derivation satifises the identity D(x)oy =
D(zy) for all x,y € R, then D = 0.

Theorem 2. Let R be a 2-torsion free semiprime ring with nonzero commutator, o and T be
automorphsim mappings. If R admits a generalized (o, T )-derivation satisfies the identity D(xoy) =
D(z)oy — D(y)ox for all z,y € R, then d = 0.

REFERENCES

[1] E.C. Posner. Derivations in prime rings, Proc. Amer. Math. Soc. 8, (1957), 1093-1100.

[2] J.Bergen. Derivations in prime rings, Canad. Math. Bull., Vol.26 (3), (1983), 267-270.

[3] M. J. Atteya. (o, 7)-Homgeneralized derivations of semiprime rings, 18th Annual Binghamton University Graduate
Conference in Algebra and Topology (BUGCAT), The State University of New York, USA, November 7- 8, and
November 14-15, (2020).

[4] M. J. Atteya. Skew-Homogeneralized derivations of rings, Math for All in New Orleans Conference, Tulane
University Math Department, 5th-7th March (2021).

10



The Tucker HO-SVD and the anisotropy of Finslerian geometric
models

Vladimir Balan
(University Politehnica of Bucharest, Faculty of Applied Sciences, Department
Mathematics-Informatics, Splaiul Independentei 313, RO-060042, Bucharest, Romania)
E-mail: vladimir.balanQupb.ro

The tensor spectral theory, as an extension of the classic spectral theory of linear operators reached
sound applications in Big Data and Image Processing, based on the main decomposition tools of
Tucker type, originating in the cornerstone HO-SVD decomposition [7, 8]. This theory enhances the
statistical analysis in various fields, originally including MRI-imaging, Special Relativity, ecology,
and HARDI biology. The present talk provides a brief survey of results recent tensor spectral
theory, and of its applications to geometric structures which rely on anisotropic metrics of Finsler
type. Several models are addressed, for which we derive the Tucker type HO-SVD decomposition
and the induced powerful approximation provides aids for identifying main geometric features, and
consistent anisotropy estimates for the Finslerian structures.

We include the mth candidate models for Special Relativity (Pavlov-Chernov, Bogoslovsky, and
Roxbourgh models), for ecology (P.L. Antonelli &al.), HARDI biology (L. Astola & al.), Garner
oncology and the physics of Langmuir-Blodgett monolayers.

We also present a brief survey of results from the spectral theory of covariant main symmetric
tensors which rely on the fundamental tensor fields of the anisotropic geometric models. We note
that the spectral data describe properties of the indicatrices associated to the Finsler norms, point
out their asymptotic properties, and allow to derive best rank-I approximations - which provide
simpler consistent estimates for the original anisotropic structures. We investigate the spectral
data of covariant symmetric tensor fields, and focus on the metric and Cartan fields of the Finsler
structures - including the Euclidean and Riemannian subcases - and further provide and discuss
natural alternatives of the spectral equations.

We consider n—dimensional Finsler structures (M, F') with the main axioms relaxed by either
dropping the positivity condition, or reducing the domain, and replacing the positive-definiteness
of the Finsler metric d-tensor field with the non-degeneracy and constant signature condition. We
O°F” 1_0°F%__ 1o components of the metric and Cartan
Dy 0y 19y 0yT oyF p
d-tensor fields, respectively. One of the important features of the Cartan tensor is that its vanishing
makes ¢g quadratic in y, and consequently the Finsler space becomes Riemannian (correspondingly,

pseudo-Finsler spaces become, in such case, pseudo-Riemannian).

shall denote by g¢;; = % and Cyjp =

For a real m-covariant symmetric tensor field 7" on the flat manifold V = R™ endowed with the
Euclidean metric g, we say that a real A is a Z-eigenvalue and that a vector y is an Z-eigenvector
associated to A, if they satisfy the system:

Ty™ =Xy, glyy) =1, where T.ym ! = Z Tiiz.cimyin oo Yim da’,

iy, imELR

where by lower dot is repeated transvection and the power is tensorial. As well, an alternative
for spectral objects is the H-eigenvalue A\ and its H-eigenvector, described by the homogeneous
polynomial system: (T.y™ !)x = A(y*)™ 1. Regarding the spectra consistency, it is known that in
the Euclidean subcase, the Z- and the H-spectra are nonempty for even symmetric tensors, and
that a symmetric tensor 7" is positive defynite/semi-definite iff all its H— (or Z—) eigenvalues are
positive/non-negative.
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Among the applications of the spectral Finsler approach, there was observed the relevance of
eigendata of the metric and Cartan tensors of the Langmuir-Finsler structure [1, 5, 9] within the
physics of monolayers which studies the interphase boundary of a mono-molecular system.

For the Langmuir model, the Cartan tensor
A , 1 03F?
—C.. i k - -

C = Ciji(r, yx)da' @ do? @ dx”, Cijp(z,y) = 1950y 0% (1)

considered at the fixed supporting element (z,y.) € ﬁ\/l, has the 1-mode provided by the slices

C=(Cuj=7v-M, Coyj=v-M, Csi; =O3x3),

34 o . ) B2 —aB 0
where v = G V=30 Y = (v, B,7) € Ty M is the supporting element, and M = | _o8 o2 0 |-

0 00

Theorem 1. Consider the Cartan tensor of the Cartan-Langmuir tensor (1) from above. Then the
associated spectral data are given as follows

+1 ;
teRY, S s = (82,02,0)% 30y
} =i {m“ . )} v

a) The Z-eigendata are given by:

g _ 1
T (Verpee Y

b) The H-eigendata are the following:
1
S)q:O = { —(aaﬂat)

B —«
teR s S 0A2(52_a2)2 = { R ,0 .
/o + B2 1 2 } N e { <\/Q2+52 Va2 + 2

Corollary 2. The Candecomp approzimation of the Langmuir-Cartan tensor (1) is twofold:

C~A=MX 0L QvsRvx, vVr €S5),.

Moreover, the HOSVD decomposition and the partial/total ranks of the Cartan tensor are shown
to be relevant in estimating the anisotropy level of the direction-dependent Finsler structure. We
also note that while the Z-eigenproblem allows a globally covariant alternative, the H-eigenproblem
exhibits a strongly local character.
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Invariant structures on homogeneous P-spaces and Lie groups
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Homogeneous ®-spaces were first introduced by V.I. Vedernikov in 1964. Fundamental re-
sults for regular ®-spaces and, in particular, homogeneous k-symmetric spaces were obtained by
N.A. Stepanov, A. Ledger, A. Gray, J.A. Wolf, A.S. Fedenko, O. Kowalski and others. It turned
out that homogeneous k-symmetric spaces G/H admit a commutative algebra A(f) of canonical
structures [2]. The remarkable feature of these structures is that all of them are invariant with
respect to both the Lie group G and the generalized "symmetries" of G/H. The classical example
is the canonical almost complex structure J on homogeneous 3-symmetric spaces with its many
applications (N.A. Stepanov, A. Gray, V.F. Kirichenko, S. Salamon and others). For k& > 3 the
algebra A(f) contains a large family of classical structures such as almost complex (J? = —id),
almost product (P? = id), f-structures of K. Yano (f3 + f = 0) and some others [2]. We dwell on
several applications of canonical structures as well as on left-invariant structures on nilpotent and
solvable Lie groups.

1) The generalized Hermitian geometry (V.F. Kirichenko, D. Blair, S. Salamon and others): canon-
ical nearly Kéhler, Killing, Hermitian metric f-structures on homogeneous k-symmetric spaces [2],
[3]; left-invariant nearly Kahler and Hermitian f-structures on some classes of nilpotent Lie groups
(especially, on 2-step nilpotent and some filiform Lie groups [4]); on generalized (in various senses)
Heisenberg groups in dimension 5, 6 [5], and 8; on special solvable Lie groups (group of hyperbolic
motions of the plane and its generalizations, the oscillator group and some others); heterotic strings.

2) Homogeneous Riemannian geometry: the Naveira classification of Riemannian almost product
structures; canonical distributions on Riemannian homogeneous k-symmetric spaces; the classes F
(foliations), AF (anti-foliations), TGF (totally geodesic foliations); the Reinhart foliations [2].

3) Elliptic integrable systems: homogeneous k-symmetric spaces and associated elliptic integrable
systems; a new generalization of almost Hermitian geometry; a new contribution to nonlinear sigma
models (F. Burstall, I. Khemar [7]).

4) Metallic structures: so-called metallic structures (golden, silver and others), which are fairly
popular (especially, golden structures) in many recent publications (M. Crasmareanu, C.-E. Hret-
canu [8], A. Salimov, F. Etayo and others); canonical structures of golden type on homogeneous
k-symmetric spaces [9].

5) Symplectic geometry: bi-Poisson geometry and bi-Hamiltonian systems [10], Hamiltonian vec-
tor fields and integrable almost-symplectic Hamiltonian systems [11], canonical almost symplectic
structures on Riemannian homogeneous k-symmetric spaces.
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Every 2-dimensional Banach space has the Mazur-Ulam property

Taras Banakh
(Ivan Franko National University of Lviv)
E-mail: t.o.banakhOgmail.com

A Banach space X is defined to have the Mazur—Ulam property if for every Banach space Y
every isometry f : Sx — Sy between the unit spheres of X,Y extends to a linear isometry of the
spaces X,Y. In 1987 Tingley posed a (still open) problem if every Banach space has the Mazur-
Ulam property. It has been shown that many classical Banach spaces (like C(K), £,(I"), L,(p)) do
have the Mazur-Ulam property. The main result of the talk is the following solution of the Tingley
problem in dimension 2.

Theorem 1. Every 2-dimensional Banach space has the Mazur—Ulam property.
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A connection between L-index of vector-valued entire function and
L-index of each its component
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The present talk is devoted to the properties of entire vector-valued functions of bounded L-index
in join variables. We need some notations and definitions. Let L : C" — R’} be any fixed continuous
function. We consider a class of vector-valued entire functions ¥ = (fi,..., f,): C" — CP. For this
class of functions there was introduced a concept of boundedness of L-index in joint variables.

Let || - lo be a norm in CP. Let L(z) = (li(2),...,ln(2)), where [;(z): C* — R, is a positive
continuous function. An entire vector-valued function F': C* — CP is said to be of bounded L-index
in joint variables, if there exists ng € Z4 such that (Vz = (21,...,2,) € C")(VJ € Z}):

() (K)
1@l _m{HFw @« g}

JILY(2) KILK(2)
) ) (o)) ) oVl - .
where F'“W)(z) = (f1"'(2),..., fp" ' (2)), [,/ (2) = Wfk(z), NJI| =1+ ...+ Jn, J! =
21" ... 0z
gl gl for J = (41,...,9n), kK € {1,...,p}. The least such integer ng is called the L-index in

joint variables and is denoted by N(F,L).

Denote by D"[z0, R/L(20)] = {z = (21,...,2,) € C": |z; — zjo| < r;/lj(20) for every j €
{1,... ,n}} the closed polydisc in C". Let Q" be a class of continuous functions L: C* — R’
such that 0 < A\ ;(R) < X j(R) < oo for any j € {1,2,...,n} and VR = (r1,...,m,) € RY,
where A\ ;(R) = ilelén inf {l;(2)/1;(20): z € D20, R/L(20)]} , A2,j(R) is defined analogously with

20

replacement inf by sup.

For F' : C" — C” let us introduce the sup-norm |F(z)|, = maxi<;j<p{|Fj(2)|}. The notation
A< Bfor A= (a,....ay), B = (b1,...,b,) € R" means that a; < b; for every j € {1,...,n}.
The following proposition was firstly deduced for analytic curves in [1]. Similar proposition was also
obtained for analytic vector-valued functions F': B2 — C2 in the unit ball B? = {z € C?: |5 |* +
|z2|* < 1}[2]. Here we present it for vector-valued entire functions F: C* — CP.

Proposition 1. Let L = (I1(2),...,1,(2)) be a positive continuous function in C™. If each com-
ponent fs of an entire vector-valued function F' = (fi,...,f,): C* — CP is of bounded L-index
N(L, fs) in joint variables then F is of bounded L-indez in joint variables in every norm, in partic-
ular, in the sup-norm and N (L; F) < max{N(L, fs): 1 < s < p}, and also F is of bounded L,-index
in the Euclidean norm with L.(z,w) > \/pL(z,w) and Ng(Ls, F) < max{N(L, f;) : 1 < s < p}.
(Here N(L, F') and Ng (L., F') are the L-indez and the L.-index in joint variables with the sup-norm
and the Euclidean norm, respectively.)

Theorem 2 ([3]). Let L € Q™. An entire vector-valued function F: C" — CP has bounded L-index
in joint variables if and only if for every R € R} there exist ng € Zy, po > 0 such that for all
zp € C" there exists Ko € Z}, || Ko|| < no, satisfying inequality
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FEO@ o " R [FU0) (20)
m —_— < <po—7—"+-
aX{ RILK(z) - 1] < o2 € D%zo. /L(ZO)]} = PO RO (z9)

This theorem is basic in the theory of functions of bounded index. Theorem 2 implies also the
following corollary.

Corollary 3. Let L € Q™. An entire vector-function F': C" — CP has bounded L-index in joint
variables in the sup-norm if and only if it has bounded L-index in joint variables in the norm || - ||o.

Theorem 4. Let L € Q™. In order that an entire vector-valued function F: C* — CP be of bounded
L-index in joint variables it is necessary that for all R € R}y there exist ng € Z, p1 > 1 such that
for all zg € C" there exists Ko € Z, || Ko|| < no, satisfying inequality
max{|F") (2)], : 2 € D"[z0, R/L(20)]} < pa| F ()], (1)
and it is sufficiently that for all R € R there exist ng € Z4, p1 > 1Vzy € C* 3K} = (k9,0,...,0),
K9 = (0,%3,0,...,0),...,3K, = (0,...,0,kp) : kJ <mng, and
(vj € {1,-..n}): max{|FUD(2)], : 2 € D0, R/L(z0)]} < pa U9 (z0)], (2)
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Separable cubic stochastic operators
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symmetric matrix.

A cubic stochastic operator (CSO) has meaning of a population evolution operator, which arises
as follows: Consider a population consisting of m species.

Let 2(0) = (ajgo), ...,xffi)) be the probability distribution of species in the initial generations, and

Pij1; the probability that individuals in the ith, jth and kth species interbreed to produce an

individual I. Then the probability distribution 2’ = (1, ..., 2},,) of the species in the first generation

T
can be found by the total probability i.e.

m
Wz = Z Piijx?x?acg, le E={1,...,m},
i,j,k=1
where the a matrix P = P(W) = {Pijk,l}Z'Lk,lzl satisfying the following properties
m
Piji1 = Priji = Pixji = Prjig = Pjiry = Pjrig > 0, Zpijk,l =1 foreach i,j,keE. (1)
=1
We define a map W of the simplex

sml = {:1: =(z1,...,xm) € R" 1 x; >0, Za:l = 1} ,
i=1
into itself, by the following rule

Wz = zm: Pijrizixzjry, € E. (2)
irj k=1
Definition 1. The operator W (2) is called cubic stochastic operator (CSO).
In this paper we consider CSO (2), (1) with additional properties
Piji1 = agbjicy,  for all i,j,k, 1 € E, (3)

where a;;,bj, iy € R entries of quadratic matrices A = (a;;), B = (bj;) and C = (cy) such that the
properties (1) are satisfied for the coefficients (3).
Then the CSO W corresponding to the matrices A, B and C has the form

xp = (W(x)); = (A@)i(B(x)i(C(x)), forall I €E, (4)
where
(A(z)), = Zaim, (B(x)), = ijlmjv (C(z)), = chzl‘k- (5)
i=1 =1 k=1

Definition 2. The CSO (4) is called separable cubic stochastic operator (SCSO) and we denote it
by W = (A, B,C).
18



We denote by m quadratic matrix m x m with elements m;; =m, i,j5 € &/
If A = 1I,, be an identity m x m matrix, i.e. a; = 0 for i # [ and a;; = 1 for all 4,1 € FE, in
properties (5). Then the following simple Proposition is useful.

Proposition 3. Let A = I, then for matrices B = (bjl);’fl:l and C' = (cp)jl=y of SCSO W =
(Im, B, C) the following property is true: bjcy > 0, BCT = m where and CT is the transpose of C.

Proposition 4. If A = I3, B = (bjl)?,lzl 18 a skew symmetric matriz. The following equation
solvable

T
B(M) = (3,3,3), k=123 (6)

if and only if bag = byz — bia. Moreover, for the solution C' = (ckl)z 1= 8 the following equality

T
<c(k)) _ (Cm, 34 bizcik 3+51201k>7 k=123 (7)

bio — b1z’ biz — b12

is true, where (c®)) is a row of matriz C' = ()} _,.

Theorem 5. If A = I3, B = (bﬂ);?l:l is a skew symmetric matriz and equality (6) is hold, then
the SCSO is the quadratic stochastic operator.
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Asymptotically equivalent subspaces of metric spaces
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We investigate the asymptotic behavior of unbounded metric spaces at infinity. To do this we
consider a sequence of rescaling metric spaces (X , %d) generated by a metric space (X, d) and

a scaling sequence (ry)nen of positive reals with r, — oo. By definition, the pretangent spaces
to (X,d) at infinity Qég 7 are limit points of this rescaling sequence. We found the necessary and
sufficient conditions under which two given unbounded subspaces of (X, d) have the same pretangent

spaces at infinity.

(Zn)neny C X and

Definition 1. Let (X, d) be an unbounded metric space. Two sequences T =
= (rn)nen if there is a

¥ = (Yn)nen C X are mutually stable with respect to a scaling sequence 7
finite limit
d
lim (Tn, Yn) )
n—oo T’TL
For every unbounded metric space (X, d) and every scaling sequence 7, we denote by Seq(X,7)
the set of all sequences Z = (2, )neny C X for which lim d(x,,p) = oo and there is a finite limit
n—o0

d
lim (-Tnv p) :
n—oo T,

where p is a fixed point of X.
Definition 2. A set F' C Seq(X,7) is self-stable if any two Z,y € F are mutually stable. F' is

mazimal self-stable if it is self-stable and, for arbitrary § € Seq(X,7), we have either § € F or there
is & € F such that & and § are not mutually stable.

Let (X,d) be an unbounded metric space, let Y and Z be unbounded subspaces of X and let
7 = (rn)nen be a scaling sequence.

Definition 3. The subspaces Y and Z are asymptotically equivalent with respect to 7 if for every
g1 = W\ ) hen € Seq(Y,7) and  Z = (2\),en € Seq(Z,7)

there exist
T2 = (YD )nen € Seq(Y,7) and  Z = (57 )nen € Seq(Z,7)

such that

d( (1) (2)) d( (2) (1))

. Yn "5 Zn . Yn "y 2n
hm —_— = hm _—

n—o0 Tn n—o0 Tn

=0.

We shall say that Y and Z are strongly asymptotically equivalent if Y and Z are asymptotically
equivalent for all scaling sequences 7.

Let (X, d) be a metric space and let p € X. For every t > 0 we denote by S(p, t) the sphere with
the radius ¢ and the center p,

S(p,t) :={x € X: d(z,p) =t},
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and for every Y C X we write
SY :=S(p,t)NY.
Let Y and Z be subspaces of (X, d). Define
e(t, Z,Y) := sup inf d(z,y)
z€SE ye
and
e(t) = max{e(t, Z2,Y),e(t, Y, Z)},
where we set £(t, Z,Y) = 0 if S = @ and, respectively, e(t,Y, Z) = 0 if S} = @.
Theorem 4. Let Y and Z be unbounded subspaces of a metric space (X,d). ThenY and Z are
strongly asymptotically equivalent if and only if

Corollary 5. Let (X,d) be an unbounded metric space and let Y be an unbounded subspace of X.
Then the following conditions are equivalent.

(1) For every 7 and every mazimal self-stable X'oo’,: C Seq(X, ) there is a mazimal self-stable
Yooi C Seq(X,7) such that Yoor C Xeos and the embedding Epm, : QY - — QX - is an
1sometry. 7 ’

(2) The equality

. e(t, X)Y)
lim ———=

t—o0 t

=0

holds.
(3) X and Y are strongly asymptotically equivalent.

Remark 6. Theorem 4 and Corollary 5 can be considered as asymptotic variants of previously
proved facts from [1].
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Isomorphic issues about the CTCs in Quantum Physics

Enzo Bonacci
(The Physics Unit of ATINER, Athens, Greece)
E-mail: enzo.bonacci@physics.org

The main solutions to the Polchinski’s paradox [7] are Novikov’s self-consistent causal loops [5]
referring to a Reciprocity Principle (RP) in physics (|2, 3, 4]) whereby the past determines the future
as well as the future determines the past. The recent proposal of a quantum circuit formulation
of the famous wormhole billiard ball paradox [1] has renovated the interest for closed time-like
curves (CTCs) applied to elementary particles. We wish to enrich such discussion by focusing on
an electron entering in a time-travel tunnel so that it can collide with its past self at low energy.
We investigate the graph isomorphism (GI) of two alternative cases about the exiting particle: 1) If
it is still an electron, then the collision deflects the trajectory of the incoming particle just towards
the tunnel entrance (within a stable time loop). 2) If it is a positron, i.e., matter going backwards
in time [6], then the interaction with the incoming electron is a process of pair production which
is reversed inside the tunnel (as annihilation) according to the RP. Our GI analysis raises open
questions ranging from the role of a preferential arrow of time to the validity of the law of inertia
in chronology violations.

REFERENCES

[1] Lachlan Bishop et al. Time-travelling billiard ball clocks: a quantum model. arXiv, e-Print : 2007.12677v2 [quant-
ph], 2021.

[2] Enzo Bonacci. Absolute Relativity. Turin : Carta e Penna, 2007.

[3] Enzo Bonacci. Eztension of Finstein’s Relativity, volume 42 of Physical Sciences. Rome : Aracne Editrice, 2007.

[4] Enzo Bonacci. Beyond Relativity, volume 43 of Physical Sciences. Rome : Aracne Editrice, 2007.

[6] Fernando Echeverria et al. Billiard balls in wormhole spacetimes with closed timelike curves: Classical theory
Physical Review D, 44(4) : 1077-1099, 1991.

[6] Richard P. Feynman. The theory of positrons. Physical Review, 76(6) : 749-759, 1949.

[7] John L. Friedman et al. Cauchy problem in spacetimes with closed timelike curves. Physical Review D, 42(6) :
1915-1930, 1990.

22



Geometrical Langlands Ramifications and Differential Operators
Classification by Verma Module Extensions
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Studies realized to the differential operator classification have been realized using the generalized
Verma modules as classifying spaces defined by the geometrical Langlands correspondences through
of functors characterized for integral transforms to define the equivalences between geometrical
objects of holomorphic bundles and objects of an algebra of operators. Likewise are characterized
the Lie algebras of these differential operators under the Hecke categories and their classifying spaces
as Verma modules extensions. Likewise, is had the following result:

Theorem 1. (F.Bulnes).The derived category of quasi-G- invariants D¢/ — modules formed with
the extended and generalized Verma modules given for “®*(“(M)) = M X p*(V),VV € (Locg), can
be identified for a critically twisted sheaves category of D-modules on the moduli stack Bung,,,Vy €
X (singularity) identified by the Hecke category He k., (9eometrical Langlands correspondence), if
this is an image of integral transforms acting on ramifications of the Hecke category Ha, VA € hx(for
ezample Hg x) on the flag manifold G/B, with weight corresponding to twisted differential operators
on Bung .

Key words: Langlands correspondence, Hecke sheaves category, moduli stacks, Verma modules,
generalized D-modules, Verma Module Extensions.
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A Hermitian manifold (M?™,.J, g) is called a locally conformal Kihler manifold (LCK - manifold)
if there is an open cover 4 = {U@}aeA of M?™ and a family {0a}aca of C* functions o, : Uy — R

so that each local metric

A =204
do =€ “%glu,

is Kéhlerian. An LCK - manifold is endowed with some form w, so called Lee form which can be
calculated as [1]
1

m—1

0Q o J.

w =

The form should be closed:

dw = 0.
Here and below, we denote by comma covariant differentiation with respect to the Levi-Civita
connection of (M?™, ], g).

If a contravariant analitic vector field £ generates conformal infinitesimal transformation of an
LCK-manifold, then the field satisfy the system [2]

1) &j =&
2) &ij+&i = (wal™+ CO)gij; )
3) gi,jk =&a ?ji + %((waga),kgij + (Waéa)ngik - (Waga),igjk);

i ¢k ¢ e
4) Jj7k§ —J7E o+ a7 =0.
If a conformal transformation (101) also preserves a product Rg;j, i. e. the equation
25 (Rgij) =0 (2)
holds, then the transformation is called conharmonic. We obtain the theorem.

Theorem 1. If an LCK-manifold (M>™,J,g) of non-zero scalar curvature admits nontrivial con-
harmonic transformations, then the general solution of the PDE system (101)-(2) depends on no
more than m? + 2m essential parameters.
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Also we have proved that the tensor

def 1 1
Py = ——5 Rij — Swij — qwiw; +

is preserved by conharmonic transformations.

(e}
W Wagij
8 J
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Applications of Linking to the Study of Causality

Vladimir Chernov
(Dartmouth College, USA)
E-mail: Vladimir.Chernov@dartmouth.edu

We will discuss the results about causality in spacetimes and Legendrian linking. The spheres
are linked in the space of all light rays associated to the spacetimes. The results were obtained in
the joint works with Stefan Nemirovski and, in particular, solve the Low conjecture, the Legendrian
Low conjecture of Natario and Tod and the problem communicated by Penrose on Arnold problem
list.
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Problem on extremal decomposition of the complex plane

Aleksandr Bakhtin, Iryna Denega
(Institute of mathematics of the National Academy of Sciences of Ukraine, Complex analysis and
potential theory Department, 3 Tereschenkivska St, Kyiv, Ukraine, 01024)
E-masl: abahtin@imath.kiev.ua, iradenega@gmail.com

Let N, R be the sets of natural and real numbers, respectively, let C be the complex plane, and
let C = C|J{oo} be its one-point compactification, R* = (0,00). Let (B, a) be the inner radius of
the domain B C C relative to a point @ € B. The inner radius of the domain B is connected with
Green’s generalized function gp(z,a) of the domain B by the relations

9B(%2,a) = —ln|z —a|+Inr(B,a) + o(1), z—a,
gB(z,00) =In|z| +Inr(B,o0) +o(l), z— co.

Definition 1. Let n € N, n > 2. The system of points 4,, := {ak eC: k=1, n} is called n-ray,
if lag| € RY for k =1,n and 0 = arga; < argas < ... < arga, < 2.

1 n
Denote ap, := — arg ak“, Qnt1:=a, k=1,n Z =

™ k=1
Problem 2. (V.N. Dubinin [1, 2]) For all values of the parameter v € (0,n] to show that the

maximum of the functional
n

In(y) =" (Bo,0) [ [ 7 (Br, ax) ,

k=1

where By, By, Bo,..., By, n > 2, are pairwise disjoint domains in C, ag = 0, |agx| = 1, k = 1, n, is
attained for the conﬁguratlon of domains Bj, and points aj which possesses the n-fold symmetry.

In work [1], the above-formulated problem was solved for the value of the parameter v = 1 and
all values of the natural parameter n > 2. Namely, it was shown that the following inequality holds

r(By, 0 H r(By, ax) <1 (Do,0) [[ r (D, d),

where dj,, Dj,, k = 0,n, are the poles and circular domains of the quadratic differential

2 n
In work [3], L.V. Kovalev got its solution for definite sufficiently strict limitations on the geometry
of arrangement of the systems of points on a unit circle, namely, for systems of points for which the
following inequalities hold

0<ar<2/\/y, k=1n, n=b5.

In work [4], it was shown that the result by L.V. Kovalev is true for n = 4. The solution of this
problem for v € (0,1] was given in work [5]. Some partial cases of this problem were studied, for
example, in [6-10].

For the further analysis, we calculate the quantity

n
In(y) =" (Do, 0) [ [ r (D, di) ,
k=1
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where dy, Dy, k = 0,n, dy = 0, are, respectively, the poles and circular domains of the quadratic
differential ( )
—w" +’Y 2
dw?= -~ "7 " gy

) takes the form

() oy

o - (2) =
[EESEE e

Theorem 3. (9] Let v € (1, 2|. Then, for any different points a1 and ag of a unit circle and any
mutually disjoint domains By, Bi, Ba, a1 € By CC, ay € By C C, ag =0 € By  C, the inequality

1 =
? (B 0)r (Br,on) 1 (Bavar) < ) (lan —aal )

1s true. The sign of equality in this inequality is attained, when the points ag, a1, as and the domains
By, By, Bs are, respectively, the poles and circular domains of the quadratic differential

As was shown in [1, 2, 3, 6], the quantity I0(y

4 w
Q(w)dw? = (MQ(;ZZ _S’Vd 2

Remark 4. Theorem 3 yields the complete solution of the above-posed problem of finding the
maximum of product of inner radii of two domains relative to the points of a unit circle on the
degree v of the inner radius of the domain relative to the origin at arbitrary v € (0,2], provided
that all three domains are mutually non-overlapping domains.

Theorem 5. [9] Let n € N, n > 3, v € (1,n].Then, for any system of different points A, =
{ar}i_, € C\{0} of a unit czrcle and for any collection of mutually disjoint domains By, By,
apo=0¢€ By CC, a;, € B, CC, k=1,n, the following inequality holds

- . T\"Y vy
BO, H Bk,ak (sm 7) (IQ ( >>
Pt} n n
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Parallel spinors on Lorentzian Weyl spaces

Andrei Dikarev
(Masaryk University, Faculty of Science, Brno, Czech Republic)
E-mail: xdikareva@math.muni.cz

In that talk I will present the recent results of joint work with Anton S. Galaev on Lorentzian
Weyl spin manifolds admitting weighted parallel spinors [2].

Parallel spinors are special Killing spinors which represent supersymmetry generators of super-
symmetric field theories and supergravity theories. The physical motivation for study Weyl spaces
with weighted parallel spinors may be found in [3]. The work [3] provides a deep investigation of
weighted parallel spinors on Einstein-Weyl manifolds of Lorentzian signature with a special atten-
tion to the dimensions 4 and 6. The techniques developed for classification of supergravity solutions
was used in that work.

We provide a description of simply connected Lorentzian Weyl spin manifolds admitting weighted
parallel spinors. The main tool for that are holonomy groups. There is a one-to-one correspondence
between the parallel spinors and the holonomy-invariant elements of the spinor module. This cor-
respondence is used in known results describing the following simply connected spin manifolds with
parallel spinors: Riemannian manifolds, pseudo-Riemannian manifolds with irreducible holonomy
groups, Lorentzian manifolds.

Using the recent classification of holonomy algebras of Lorentzian Weyl manifolds [1], we classify
the holonomy algebras of Lorentzian Weyl spaces admitting weighted parallel spinors. It turns
out that for non-closed Weyl structures, there are two types of such algebras. In each case, the
dimension of the space of parallel spinors is found.

For Lorentzian Weyl manifolds admitting recurrent null vector fields are introduced special local
coordinates similar to Kundt and Walker ones. Using that, the local form of all Lorentzian Weyl
spin manifolds with weighted parallel spinors is given. The Einstein-Weyl equation for the obtained
Weyl structures is analyzed and examples of Einstein-Weyl spaces with weighted parallel spinors
are given. Some examples have previously appeared in [3] and other literature. It turns out that
the Einstein-Weyl equation implies that the weight of a non-zero weighted parallel spinor is equal
to dim M — 4. Parallel spinors of that weight were studied in [3]. In contrast, we describe Weyl
structures with non-zero weighted parallel spinors of arbitrary weight.
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Matrix problems, triangulated categories and stable homotopy
types

Yuriy A. Drozd
(Institute of Mathematics of the National Academy of Sciences of Ukraine)
E-mail: y.a.drozd@gmail.com

The talk is a survey of some results on classifications of stable homotopy types of polyhedra
(finite CW-complexes). We present technical tools for calculations in triangulates categories, which
are related to mariz problems, namely, to bimodule categories. Applying this technique to the stable
homotopy category [1] we obtain a complete classification of stable homotopy types of polyhedra
having cells at most in 4 successive dimensions and of torsion free polyhedra having cells at most in
7 successive dimensions. For details, see [2, 3]. These results were mainly obtained in collaboration
with H.-J. Baues.
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On the properties smooth manifolds defined by intersections

V.S.Dryuma
(IMI "Vladimir Andrunachievici", Moldova, Kishinev )
E-mail: valdryumQgmail.com

The report is devoted to study properties and construction an examples of the (3,4)-dim smooth
manifolds contained the surfaces of constant curvature.
At the first will be considered the Dyck-surface (W.Dyck,1888) defined by the algebraic equation

(212 + 222) (212 + 222 + 232) — 23 (4 212 + 2 222) =0, (1)

where z1, 22, 23 are the complex coordinates: z; = « + Ia, 20 = y+ Ib, z3 = z + I¢, I = —1.
The complex surface (1) is generalization of real projective surface and belongs to the class of the
one-side surfaces having an important applications in various branch of modern algebraic topology
(J.Milnor,1968).

Proposition 1. Joint consideration both equations (1) and the equation of the 5D-sphere |21 | +
| 22|+ |23]? = 1 with real coordinates (x,vy,z,a,b,c), in general, lead us to the some 4D-space, where
(t)-is auziliary parameter:

4G(a,b,c,z,t) = b2 — b+ b% 4+ bz2 + 2¢t — 2te — bt 4+ ba® = 0, (2)
containing 3D-subspace with the equation
SH(a,b,c,2) = 4a%0? —4b? +4b* + 42 +40°FP — 422 + 40222 + 2232 = 0. (3)

With the equation (3) at the condition b = b(a) can be associated an invariant second order ODE
of the form b — Ab — 3450 — 3A30 — Ay =0, A; = A;(a,b) having the General integral

3F(a,b, Cy, Cs) = — C; — b* — a®b* +202Cy = 0.

having an algebraic curve of genus g, = 1, and which is placed on the 2D-surface, equipped by the
metrics of const positive curvature K =1

¢*ds® = i (@, y)da® + 2oz, y)dx dy +3(x,y)dy®,  d(x,y) = b1 (2, y)0s(,y) — (P2(2,9))* . (4)
The components 1; of the metrics are determined from the system (M.R.Liouville,1897)
Ung +2 A3 — 2 A 00 =0, Ysy+2A1¢s — 2 Asps =0,
Y1y + 2000 — 2 Agthy +4 Agthy —2A903 =0, P3p + 292y +2Asths —4 Agtp3 +2A191 = 0. (5)

In the second part of report we consider some examples of the Brieskorn type manifolds which are
the intersection of the fife-dimensional sphere with the singular manifold (I =2, m =3, n =25)

12+ 2ol + 22 = 1, 224 23+ 28 = 0. (6)
Proposition 2. From the equations of the system (6)
a2+ -1=0, 22a+3y20—-b+5zc—10223 + P =0,
22— a2 —3yb? + 25— 10232 +52¢1 =0, (7)

on the siz real coordinates zy = x + Ia, zo =y + Ib,z3 = z + Ic, in the case the relation z = z(y)
holds, the linearizable the second order ODE

2 - (2w) (~vib=0) + =)

sz(y - yz(y)
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can be derived. It has general integral

F(z7y701702) =zZ—-V 0192+202 :07
containing the 2D-surface of constant curvature with the components of the metrics defined from

(1),

Cyz®+ C))y°® ¢ 22+ C 223 (= Cs+ Cyy* +2C o2
¢2($,y):( - 3 4) 13 27 ¢1(£L‘,y)2— ( ‘ 5 : )7
vz VY y'/3

23 (— Cy + 21 Cy + 202C
Y 5 +ax7Cg +
¢3($7y) = - ( 24/3 4)

with the parameters C;.
By analogy are considered the case of tetrahedral space which corresponds to the intersection of
the fife-dimensional sphere with singular manifold (1 =2, m=3, n=4)

a1l + 122’ + |2 =1, 2 +23 + 25 =0, (8)
for which corresponding ODE has the form
(&) (3 <1Z(y))2 2 =6 (£2) v2l) + 2 (:(v))°
d? ) dy dy dy g

y (2(y)*

and the octahedral space defined by the condition

212+ 222 + |23> = 1, 2% 4 25 + 2225 =0, (9)

00
with the ODE: %z(y) = —<dyz(;y))), and corresponding metrics (4) with the components ;(x,y)

A Y 2c 2c, +C C
z/zg(m,y):—2y2/303x2—4y2/504m+05y2/3, 1/12(9[;,y):y s +y Cy+ Cro+ ,27

VY

-1 2ng4-01y2+05
’(/}1('1"7y) - / y4/3 .

To studying a moore detail properties of considered spaces can be used the 4D-Riemann exten-
sions

ds®> =2 (245 —tA)) do® + 4 (2Ag — tAs) do dy +2 (2A; —tAg) dy* +2dy dz + 2 dy dt

of 2D-metrics and with help of the Liouville-Tresse-Cartan invariants to investigated topological
properties of the Brieskorn manifolds.
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Some applications of transversality for infinite dimensional
manifolds

Kaveh Eftekharinasab
(Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine)
E-mail: kaveh@imath.kiev.ua

We present some transversality results for a category of Fréchet manifolds, the so-called MC*-
Fréchet manifolds. In this context, we apply the obtained transversality results to construct the
degree of nonlinear Fredholm mappings by virtue of which we prove a rank theorem, an invariance
of domain theorem and a Bursuk-Ulam type theorem.

We refer to [1, 2| for the basic definitions and result regarding MC*-Fréchet manifolds. We
assume that E, F are Fréchet spaces and I/ © E is an open subset, also that M, N are MC*-
Fréchet manifolds.

Theorem 1 (Transversality Theorem). Let ¢ : M — N be an MC*-mapping, k > 1, S C N an
MC*-submanifold and ¢ h S. Then, p~Y(S) is either empty of MC*-submanifold of M with

(TJ:W)_l(TyS) = Tz(@_l(s))a LS %0_1(5)7 y = ().
If S has finite co-dimension in N, then codim(p~1(S)) = codimS. Moreover, if dimS = m < oo
and ¢ is an MC*-Lipschitz-Fredholm mapping of index I, then dim ¢~ (S) =1 +m.

Theorem 2 (The Parametric Transversality Theorem). Let A be a manifold of dimensionn, S C N
a submanifold of finite co-dimension m. Let ¢ : M x A — N be an MC*-mapping, k > {1,n —m}.
If © is transversal to S, ¢ M S, then the set of all points x € M such that the mappings

@zt A= N, () :== ¢(x,))

are transversal to S, is residual M.

Theorem 3 (Rank theorem for M C*-mappings). Let ¢ : U @ E — F be an MC*-mapping, k > 1.
Suppose ug € U and Dp(ug) has closed split image F1 with closed complement Fo and split kernel Eqg
with closed complement By. Also, assume Dp(U)(E) is closed in F and Do(u)|g, : E1 — Dp(u)(E)
is an M C*-isomorphism for each v € U. Then, there exist open setsU; @ F1OEq, Uy © E, V) @ F,
and Vo @ F and there are MC’k—diﬁeomorphisms ¢ V1 — Vo and ¢ : Uy — Us such that

(@OWOTﬁ)(f,@):(fao)a V(f,€>€u1.

Theorem 4 (Invariance of domain for Lipschitz-Fredholm mappings). Let ¢ : M — N be an
MCF-Lipschitz-Fredholm mapping of index zero, k > 1. If o is locally injective, then ¢ is open.

Definition 5. Let ¢ : M — N be a non-constant closed Lipschitz-Fredholm mapping with index
1 > 0 of class MC¥such that k > [ 4+ 1. We associate to ¢ a degree, denoted by deg ¢, defined as
the non-oriented cobordism class of ¢ ~1(q) for some regular value q. If [ = 0, then degp € Zs is
the number modulo 2 of preimage of a regular value.

Theorem 6 (Bursuk-Ulam Theorem). Let ¢ : U — F be a non-constant closed Lipschitz-Fredholom
mapping of cla:ssf]WC'2 with index zero, where U @ F is a centrally symmetric and bounded. If ¢ is
odd and for v € U we have u ¢ @(OU). Then deg(y,0r) =1 mod 2.
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Uniqueness theorems for almost periodic objects

Sergii Favorov
(Kharkiv Karazin’s national university Svobody sq.,4)
E-mail: favorov@gmail.com

New uniqueness theorems are considered for various types of almost periodic objects: functions,
measures, distributions, multisets, holomorphic and meromorphic functions, Fourier quasicrystals.
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On symmetry reduction and some classes of invariant solutions of
the (1 + 3)-dimensional homogeneous Monge-Ampére equation

Vasyl Fedorchuk
(Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine,
79060, 3-b Naukova St., Lviv, Ukraine)
E-mail: vasfed@gmail.com

Volodymyr Fedorchuk
(Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine,
79060, 3-b Naukova St., Lviv, Ukraine)
E-mail: volfedOgmail.com

A solution of many problems of the geometry, theoretical and mathematical physics has reduced to
the investigation of the Monge-Ampere equations in the spaces of different dimensions and different
types.

It is well known that the symmetry reduction is one of the most powerful tools to investigate
partial differential equations (PDEs) with non-trivial symmetry groups. In particular, for this
purpose, we can use a classical Lie-Ovsiannikov method. This method, among the other, makes
it possible to perform the symmetry reduction and construction of invariant solutions of those
equations.

In 1984, Grundland, Harnad, and Winternitz pointed out that the reduced equations, obtained
with the help of nonconjugate subalgebras of the same ranks of the Lie algebras of the symmetry
groups of some PDEs, were of different types. They also investigated the similar phenomenon. The
results obtained cannot be explained using the classical Lie-Ovsiannikov approach.

To try to explain some of the differences in the properties of the reduced equations for PDEs
with nontrivial symmetry groups, we suggested to investigate the relationship between the structural
properties of nonconjugate subalgebras of the same rank of the Lie algebras of the symmetry groups
of those PDEs and the properties of the reduced equations corresponding with them.

At the present time, we have investigated the relationship between structural properties of the
three-dimensional nonconjugate subalgebras of the same rank of the Lie algebra of the Poincaré
group P(1,4) and the properties of reduced equations for the (1 + 3)-dimensional homogeneous
Monge-Ampére equation. We obtained the following types of the reduced equations:

- identities,

- the linear ordinary differential equations,

- the nonlinear ordinary differential equations,
- the partial differential equations.

Some classes of invariant solutions have been constructed.

In my report, I plan to present some of the results obtained concerning with reduction of the
(1 4 3)-dimensional homogeneous Monge-Ampére equation to identities.
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Deformations of circle-valued Morse functions on 2-torus

Bohdan Feshchenko
(Institute of Mathematics of NAS of Ukraine)
E-mail: fb@imath.kiev.ua

Let M be a smooth compact surface, X be a closed (possible empty) subset of M. By P we also
denote either R or S'. The group D(M, X) of diffeomorphisms of M fixed on X acts from the right
on the space of smooth maps C°°(M, P) by the rule

7 C%(M, P) x D(M, X) = C®(M,P),  ~(f,h) = foh.
With respect to v we denote by
O(f,X)={fohlhe DM, X)}

the stabilizer and the orbit of f € C°°(M, P). Endow strong Whitney C*°-topologies on C*° (M, P)
and D(M, X); then for a map f € C°°(M, P) these topologies induce some topologies on S(f, X)
and O(f, X). We denote by Djq(M, X) a connected component of the identity map D(M, X), and
by Of(f, X) a connected component of O(f, X) containing f. If X = & we omit the symbol “&”
from our notation.

To state our main result we need a notion of wreath product of groups of a special kind. Let

G be a group, n > 1 be an integer. A semi-direct product G™ x Z with respect to a non-effective
Z-action o on G™ by cyclic shifts

a(bo,bi,...,by—13k) = (b, bip, .o bngr—1),

where all indexes are taken modulo 7, will be denoted by G, Z and called a wreath product of G
with Z under n.
The following theorem is our main result.

Theorem 1 ([1]). Let f be a function from F(T?, P) with at least one critical point and whose
Kronrod-Reeb graph contains a cycle. Then there exist a cylinder Q C T? such that flg:Q@— P is
a Morse function, n € N such that there is an isomorphism

’/Tlof(f) = T‘—OS/<f|QaaQ) 2n Za
where 8'(flg, 0Q) = 8(flo. 0Q) N Du(Q, 0Q).
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Realization of a graph as the Reeb graph of a Morse, Morse—Bott
or round function

Irina Gelbukh
(Instituto Politécnico Nacional, Mexico City, Mexico)
E-mail: i.gelbukh@nlp.cic.ipn.mx

Reeb graph Ry of a function f : M — R is a topological space obtained by contracting the
connected components of the level sets of f to points, endowed with the quotient topology; for a
smooth function, connected components containing critical points are called vertices, i.e., the Reeb
graph of a smooth function is the quotient space with marked points.

By a graph we understand a pseudograph (allowing loop edges and multiple edges); it has a
geometric realization as a one-dimensional CW complex, in which 0-cells correspond to vertices and
1-cells to edges. A graph needs not to be connected.

Definition 1. We say that a Reeb graph Ry has the structure of a finite graph G, or Ry is isomor-
phic to G, or Ry is G, if there exists a homeomorphism /7y — G mapping one-to-one the vertices
of Ry to the vertices of G.

Generally, the Reeb graph is not a finite graph; in our talk we consider a simple counterexamle.
Recently Saeki proved a criterion:

Theorem 2 (|1]). Let M be a closed manifold, f : M — R a smooth function. Then the Reeb graph
Ry has the structure of a finite graph if and only if f has a finite number of critical values.

Every graph without loop edges is the Reeb graph of some function:

Theorem 3 ([2]). Let G be a finite graph. Then there exist a closed manifold M, and a smooth
function f: M — R such that its Reeb graph Ry has the structure of G if and only if G has no loop
edges.

The problem of whether a finite graph is the Reeb graph of some function was first studied in
2006 by Sharko [3]. He considered functions with finite critical set Crit(f). In particular, he showed
that the graph shown in Figure 3.1 is not the Reeb graph of any such function.

FiGure 3.1.

Below we give criteria for a graph to be the Reeb graph of a function of a given class on a closed
manifold: Morse, Morse-Bott, round, and in general smooth functions whose critical set Crit(f)
consists of a finite number of submanifolds.

In contrast to works of Michalak [4] and Martinez-Alfaro et al. [5] who studied the realization
problem in terms of the graph orientation, the following criteria are given in terms of the graph
structure, namely, the structure of its leaf blocks, i.e., maximal biconnected subgraphs containing
at most one cut vertex:
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Theorem 4 (|6]). A graph G is isomorphic to the Reeb graph Ry of some smooth function f with
finite Crit(f) on a closed manifold if and only if G is finite, has no loop edges, and all its leaf blocks
are path graphs on 2 vertices (closed intervals). The function f can be chosen Morse.

Theorem 5 ([7]). For any given n > 2, a graph G is the Reeb graph Ry of some smooth f whose
Crit(f) is a finite number of submanifolds, on closed n-manifold if and only if G is finite, has no
loop edges, and each leaf block L has a vertex v with degv < 2, or two such vertices if L is a
non-trivial (has an edge) connected component of G. The function f can be chosen Morse—Bott.

This theorem shows that Sharko’s graph in Figure 3.1 cannot be realized even as the Reeb graph
of a function whose Crit(f) is a finite number of submanifolds. Indeed, this graph has three leaf
blocks, two of them being closed intervals, and the third leaf block has only 3-vertices.

Morse-Bott functions play a special role in the Reeb graph theory (cf. Theorem 3):

Theorem 6 ([8]). Any finite graph is homeomorphic to the Reeb graph of a Morse—Bott function.

Note that, in contrast to Theorem 3, this theorem is true even for graphs with loop edges.

Critical set of a round function consists of a finite number of circles. For a round function,
the structure of its Reeb graph depends not only on leaf blocks, but also on the dimension of the
manifold and its orientability:

Theorem 7 (|7]). A graph G is isomorphic to the Reeb graph of a round function f: M™ — R on
a closed n-dimensional manifold if and only if G is finite, has no loop edges, and

has a non-cut verter v with degv = 2 if n =2, orientable surface
each its leaf block < has a non-cut vertexr v with degv < 2 if n = 2, non-orientable surface

is a path graph on 2 vertices (closed interval) if n > 3.
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Foliations in moduli spaces of abelian varieties and bounded global
G-shtukas

Nikolaj Glazunov
(Glushkov prospect 40, Glushkov Institute of Cybernetics NASU, Kiev)
E-mail: glanm@yahoo.com

In this communication we review and study moduli spaces of abelian varieties, of p-divisible
groups, of bounded global G-shtukas and their possible foliations in characteristic p. At first I
recall the definitions of the above mentioned notions. Then we shortly survey results by Rapoport,
Richartz [1], by Oort [2]|, by Mantovan [3|, by Arasteh Rad and Hartle |4], by Hartl and Viehmann [5],
by Harris and Taylor [6] and by Wei} [7]. More completely we discuss results by Weil [7]. Let C be
a smooth projective geometrically irroducible curve with the function field F,(C') over a finite field
F, with ¢ elements. Let G be a parahoric Bruhat-Tits group scheme over C. Author [7] considers
“a foliation structure for Newton strata moduli spaces of bounded global G-shtukas with H-level
structure for an arbitrary parahoric Bruhat-Tits group G” and “Igusa varieties”. She obtaines a
morphism (Main Theorem 0.1) to the moduli space of global G-shtukas. The author then relates
here foliation structure to Oort‘s foliations, to Harris and Taylor and to Mantovan. These results,
although difficult to explane in a short reviiew, are well summerised in a short Introduction. Below
bounded global G-shtukas with H-level structure are considered. Briefly, the general idea is to
start with a foliation stucture on the moduli space of such global G-shtukas and describe it “as a
product of a covering of central leaves by Igusa varieties with truncated Rapoport-Zink spaces”. The
Main Theorem 0.1 gives the morphism from the product of author‘s Igusa varieties and trancated
Rapoport-Zink spaces to the moduli spaces of global G-shtukas. The morphism is finite by the
Proposition 6.19. The author also gives an application of the Main Theorem 0.1 to the leaves inside
a Newton stratum and compute dimensions of these leaves which turns out to be the same for all
leaves. For some details, along with the references above, please see [8, 9].
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Geometry of curves in three-dimensional space and invariants of
nonlinear differential equations of the second order

Anna Glebova
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E-mail: annagl95@yandex.ru

The talk is devoted to differential invariants of nonlinear differential equations of the second order
of the form
un = [a(w)]es + [B(u)]e + (). (1)
where t, x are independent variables and «, 3,y are smooth functions of u.
We considered admissible point transformations only, i.e. transformations of the space of 0-jets
JO(R?) that preserve the class of such equations (see, for example, [1, 2|). Admissible transforma-
tions form a six-dimensional Lie group with Lie algebra G thai is generated by the admissible vector

fields
0 0 0 0 0 0 5
o oo Bu ot "on “Gu @
The first three vector fields correspond to translation along the x,y, v axes, and the last three ones
correspond to homothety.
Write equation (1) in the following form:

ug = ' (u)u2 — a(u)upe — blu)u, — c(u),
where

a(u) = o'(u), bu) = B'(u), c(u)=y(u).

Consider the following one-dimensional trivial bundle
7R3 =R, 7:(abc) u.

A section of this bundle are parametric curve in R? that correspond to equation (1). Let J*(m) be
the space of k-jets of sections of m with canonical coordinates w, ag, bg, cg, - - . , ag, bg, Ck.
Restriction of the Lie algebra of admissible vector fields to the space J°(r) is given by the following

vector fields:

9 L0 0 0 0 9 0 0

du’ “M0ag " oy Moag ok | Cae’ “ou Pae
Theorem 1. The algebra of differential invariants of equations (1) is generated by the following
functions:

2k 2k—1 2k
Rk = k1 k0 LA k.k SR ™k k410
a4y Cp g€ agCo

where k=1,2,....

The constructed invariants are analogs of curvature and torsion for curves in three-dimensional
Euclidean space.
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On Orthosymmetric n-morphisms

Omer GOK
(Yildiz Technical University, Faculty of Arts and Sciences, Mathematics Department, Esenler,
Istanbul, TURKEY)
E-mazil: gok@yildiz.edu.tr

Let E and F be vector lattices.We say that a bilinear mapping 7' : £ x E — F' is an orthosym-
metric mapping if T'(x,y) = 0in F', whenever | z | A | y |= 0 in E. Generalization of this definition
for n linear mapping is that 7' : £ x E X ... x E — F is an orthosymmetric multilinear mapping
if T'(x1,x2,...,2,) = 0 for all zy,...,2, € E such that | z; | A | z; |= 0 for some pair of indices
1 <4,5 <n. By E~ we denote the set of all order bounded linear functionals on £. F;’ denotes the
set of all order continuous linear functionals on E. By (E™); we denote the order continuous order
bidual of E. Let F1, ..., By, and F' be vector lattices. A multilinear mapping ¥ : Ey X ... x E,, — F'is
said to be a lattice n-morphism if | U(x1,...,zp) |= V(| 21 |, ..., | 2 |) forall x; € E; fori =1,2,...,n.
We say that a lattice n-morphism and orthosymmetric multilinear mapping is an orthosymmetric
n-morphism.

Orthosymmetric bilinear mappings have been studied by a lot of authors. For example, M.A.
Toumi and R. Yilmaz give the extensions of orthosymmetric bilinear mapping to the order contin-
uous order bidual of a vector lattice by using Arens multiplication.

In this study, we extend an orthosymmetric n-morphism to the order continuous order bidual of
a vector lattice by using Arens product. We show that an extension of orthosymmetric n-morphism
is again orthosymmetric n-morphism. Unexplained notion and terminology we refer to the following
references.

Theorem 1. Suppose that E is an Archimedean vector lattice and F is a Dedekind complete vector
lattice. If ¥V : E X E X ... x E — F is an orthosymmetric n-morphism, then n-th order adjoint of ¥

~

on the order continuous order bidual (E™)) of E is again an orthosymmetric n-morphism.
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On homotopy nilpotency of Moore space
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Given based spaces X7, X2, we use the customary notations X; x Xy for their Cartesian product,
X1 V X for their wedge and X3 A X3 for the smash product of X7, Xo.

Recall that an H-space is a pair (X, ), where X is a space and p: X x X — X is a map such
that the diagram
o

X xX X

XVvX

commutes up to homotopy, where V : X V X — X is the folding map. An H-space X is called a
group-like space if X satisfies all the axioms of groups up to homotopy. From now on, we assume
that any H-space X is group-like. For an H-space X, we write ¢x 1 = tx, px2: X x X — X for
the basic commutator map and ¢x 11 = px 20 (¢xn X tx) for n > 2.

The nilpotency class nil (X, ) of an H-space (X, ut) is the least integer n > 0 for which the map
©x,nt+1 = * is nullhomotopic and we call the homotopy associative H-space X homotopy nilpotent.
If no such integer exists, we put nil (X, ) = oco. In the sequel, we simply write nil X for the
nilpotency class of an H-space X.

In virtue of [2, 2.7. Theorem]|, we have

Theorem 1. If X is an H-space then
nil X = sup,, nil[X"™, X] = sup,, nil[X"*", X] = supy nil[Y, X],
where m ranges over all integers and 'Y over all topological spaces.
Then, by means of [8, Lemma 2.6.1], we may state
Corollary 2. A connected H-space X is homotopy nilpotent if and only if the functor [—, X] on

the category of all spaces is nilpotent group valued.

With any based space X, we associate the integer nil Q(X) called the nilpotency class of X for
the loop space (X)) on X. Although many results on the homotopy nilpotency have been obtained,
the homotopy nilpotency classes have been determined in very few cases.

Example 3. (1) It is well-known that
3 for n even with n #£ 2;

nilQ(S") = ¢ 2 for n odd with n #1,3,7 or n = 2;
1 forn=1,3,7

for the n-sphere S™.
(2) For the wedge S™ Vv S™ of two spheres with m,n > 2, we have
nil Q(S™ v S") = oc.
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Write KP™ for the projective m-space for K = R, C, the field of reals or complex numbers and
H, the skew R-algebra of quaternions. Then, results from [6] have been applied in [3] to study
extensively the homotopy nilpotency of the loop spaces of Grassmann and Stiefel manifolds over K,
and their p-localization.

Let SQ;SL_l be the p-localization of the sphere S*”~! at a prime p. The main result of the paper

[4] is the explicit determination of the homotopy nilpotence class of a wide range of homotopy
associative multiplications on localized spheres S?g_l for p > 3.

Next, let A be an Abelian group and n any integer > 2. A C'W-complex X satisfying 7;(X) =0
for j <m, m,(X) ~ A and H;(X) = 0 for i > n is known as a Moore space of type (A, n), or simply
an M (A, n) space. By [7], it is known that a Moore space M (A, n) with n > 2 exists and, in view of
[5, Example 4.34], the homotopy type of a Moore space M(A,n) is uniquely determined by A and
n > 2. This implies that every Moore space M (A,n) with n > 3, is the suspension XM (A, n — 1).
Furthermore, in [1, Section 2], it was shown that also M (A,?2) is the suspension X L(A) for some
CW-complex L(A).

Now, we examine the homotopy nilpotency of M(A,n) with > 2. Notice that S = M(Z,n) and
the wedge S"VS™ = M(Z&®Z,n) for the integers Z. Then, by Example 3, we have that nil Q(S") < 3
but nil Q(S" v §") = oo for n > 2.

First, we show the general fact

Proposition 4. If the reduced homology ﬁ*(X, F) has at least two primitive generators, where I is
a field then QX(X) is not homotopy nilpotent.

Then, we state the main resut

Theorem 5. Let m > 1, ni,...,ny > 2 and M(Ag,ng) be Moore spaces of type (Ag,ng) for
k=1,...,m. Then:

(1) nilQ((M(A1,n1) X -+ X (M(Ap,nm)) < 0o if and only if if Ay are torsion-free groups with
rank r(Ag) =1 fork=1,...,m;

(2) nil Q((M (A1, n1) V-V M(Ap, 1)) < 00 if and only if m =1 and Ay is a torsion-free group
with rank r(A;) = 1.

In particular, we derive

Corollary 6. If M(A,n) is a Moore space with n > 2 then
nilQ(M(A,n)) < oo

if and only if A is a torsion-free group with rank r(A) = 1 or equivalently, A is a subgroup of the
rationals Q.
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Metric viewpoint in mapping theory between Riemannian
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The theory of multidimensional quasiconformal mappings employs three main approaches: ana-
lytic, geometric (modulus) and metric ones. In this talk, we use the last approach and establish the
relationship between various classes of mappings on Riemannian manifolds including homeomor-
phisms of finite metric distortion (FMD-homeomorphisms), finitely bi-Lipschitz, quasisymmetric
and quasiconformal mappings. The appropriate classes of homeomorphisms involving the modulus
technique are also presented. One of the main results shows that FMD-homeomorphisms are lower
@Q-homeomorphisms. As an application, there are obtained some sufficient conditions for bound-
ary extensions of FMD-homeomorphisms. These conditions are illustrated by several examples of
FMD-homeomorphisms.

A classical example of significance of metric approach can be illustrated by the Bohr-Menchoff-
Trokhymchuk theory on analyticity (monogeneity) of a complex variable function. In 1937 Menchoff
[2] generalized the Bohr theorem [1] on analytic functions in the terms of preserving infinitesimal
circles. More precisely, for a continuous and locally univalent mapping w = f(z) of a domain D
onto a domain Dx and zg € D, take the quantity

max [f(z') = f(z0)]

&' —z0l=r
=i 7 )
2! —zol=r

and say that f preserves infinitesimal circles in D if H(zp,r) — 1 as r — 0. The Menchoff result
states that the preserving infinitesimal circles at all zy except for at most a countable set completely
provides that either f or its conjugate is analytic in D. This pure metric condition has been ex-
tended to continuous mappings by Yu. Yu. Trokhymchuk [3] involving the Stoilow theory on interior
mappings.

The classes of mappings presented in the talk can be treated as far advanced extensions of the
Bohr-Menchoff-Trokhymchuk theory on complex plane to more general structures.
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Monogenic functions with values in commutative complex algebras
of the second rank with unity and generalized biharmonic equation
with non-zero simple characteristics
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Among all two-dimensional algebras of the second rank with unity e over the field of complex
numbers C, we found a semi-simple algebra By := {cie + cow : ¢ € C, k = 1,2}, w? = e, containing
bases {e1, e}, such that Byp-valued “analytic” functions ®(ze; + yes) (x, y are real variables) satisfy
the fourth order homogeneous partial differential equation of the form:

o ot o ot o
bi— +b b b bs— =0 1
( 18y4+ 28w8y3+ 38x28y2+ 40m38y+ 58:174) u(z,y) ) (1)
where complex coefficients by, € C, k = 1,5, bs # 0, such than the Eq. of characteristics
1(s) := bys* + bos® + b3s® + bys + b5 = 0,5 € C, (2)

has four pairwise different roots (each root is a simple root).

A set of pairs ({e1,e2}, @), where all real components of ® satisfy Eq. 1, is described in the
explicit form.

A totalies of “analytic” functions ®(xe; + yes), such that the first real component of each of
them satisfies the given solution u of Eq. 1 in the simply-connected bounded domains, are found in
[2, 3, 5, 6].

Particular cases of this research are considered in [1, 2, 3, 4, 5].

The complete statements, proofs and definitions are considered in [6].

Acknowledgment. The work is partially supported by the Grant of Ministry of Education and
Science of Ukraine (Project No. 0116U001528).
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The Collatz conjecture from an algebraic point of view
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The Collatz conjecture is an open problem in number theory stablished in 1937 by Lothar Collatz
and can be stated as follows: If f : N — N is the function defined by:

z in is even
fn) = { 3n2—|—1 i 1S odd

the conjecture says that given n € N, there exists k > 0 such that f*)(n) = 1 and the only orbit
is {1,2,4}

Every topology 7 can be seen as a commutative semiring under union and intersection. If 7 is
the topology on N given by the open sets as those subset 6 of N such that f~!(#) C 6, we prove
that the Collatz conjecture is true if and only if 7¢, viewed as a commutative semiring, is a local
semiring.
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On the monoid of cofinite partial isometries of positive integers
with a bounded finite noise
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We follow the terminology of |2, 4, 5|. For any positive integer j the semigroup INgg] is called

the monoid of cofinite isometries of positive integers with the noise j. It was introduced in [4].
Any inverse semigroup S admits the minimum group congruence Cpmg:

aCmgb if and only if there exists e € E(S) such that ea = eb.

Proposition 1. Let v and § be elements of the monoid IN‘gy]. Then ¥€mgd in INggﬂ if and only
if nh — nfi, =ng — ng. Moreover, the quotient semigroup INgC[]]/ng 15 1somorphic to the additive

group of integers Z(+) by the map
Mg * INU! — Z(+), v n}—nd

Example 2. We put cINgY! = NI Z(+) and extend the multiplications from INZY) and Z(+)
onto CIN&LJ Vin the following way:

koy=7-k=k+ (Y)7Ten, € Z(+), forall ke€Z(+) and -y € INZY.
Theorem 3. For any positive integer j every Hausdorff shift-continuous topology T on INgy] 18
discrete.
Proposition 4. Let j be any positive integer and INggj] be a proper dense subsemigroup of a Haus-
dorff semitopological semigroup S. Then I = S\ INgy] 15 a closed ideal of S.

Theorem 5. Let j be any positive integer and INgc[f_] be a proper dense subsemigroup of a Hausdorff
topological inverse semigroup S. Then I =S\ INgCLﬂ s a topological group.
]

topological inverse semigroup S. Then the group S\ INgy] contains a dense cyclic subgroup.

Corollary 6. Let j be any positive integer and INgg be a proper dense subsemigroup of a Hausdorff

Example 7. Let CINgy] be a semigroup defined in Example 2. Put M be an arbitrary subset of
{2,...,7}. We define the topology 7'|]c\4 on CIN&[}?} in the following way:

(7) all elements of the monoid INgy] are isolated points in (CINgO[j ], 7]{:\/" );
(¢4) for any k € Z(+) the family B (k) = {UM(k): i € N}, where
UM(k) = {k} U {y € CINU/[M]: k < v and nd > i},
is the base of the topology 7'|]c” at the point k € Z(+).

Theorem 8. Let j be any positive integer and INgy] be a proper dense subsemigroup of a Hausdorff
locally compact topological inverse semigroup (S, 7). Then (S,T) topologically isomorphic to the

topological inverse semigroup (CIN%j],ley) for some subset M of {2,...,j}.
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Corollary 9. For any positive integer j there exists (j—1)!+1 distinct topologically non-isomorphic
Hausdorff locally compact semigroup inverse topologies on the monoid CIN&EJ].

The obtained results generalize the corresponding results of the papers [1] and [3].
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On some generalization of the bicyclic monoid
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We introduce algebraic extensions Bf of the bicyclic monoid for an arbitrary w-closed family %#
subsets of w which generalizes the bicyclic monoid, the countable semigroup of matrix units and some
other combinatorial inverse semigroups. It is proven that Bf is combinatorial inverse semigroup
and Green’s relations, the natural partial order on BZ and its set of idempotents are described.
We prove the criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the semigroup Bf .
We gave the criteria when the semigroup Bf has the identity, and when the semigroup Bf is
isomorphic to the bicyclic semigroup or the countable semigroup of matrix units.
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Variational principles for metric mean dimension
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Entropy has been a fundamental concept in the theory of dynamical systems from its beginnings.
Together with the newer concept of mean dimension, these invariants can be related to various
embeddings in shift spaces. An important result from 1970, known as the "variational principle"
relates topological and measurable entropies. Recently various variational principles relating metric
mean dimension and (variants of) measurable entropy have been proven. We will survey some of
these old and new developments. Based on joint work with Adam Spiewak.
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A generalized Lie-algebraic approach to constructing of integrable
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In the paper [1] a new metrized Lie algebra of fractional integral-differential operators has been
introduced and the infinite hierarchy of Lax type Hamiltonian flows on its dual space, which is
reduced to the hierarchies of the Lax integrable fractional-differential dynamical systems on coad-
joint orbits, has been constructed by use of the Adler-Kostant-Symes Lie-algebraic scheme. In our
report we propose a generalization of the described in [1] Lie-algebraic approach to constructing
of Lax integrable fractional-differential dynamical systems, which is based on the central extension
by the Maurer-Cartan 2-cocycle of the mentioned above operator Lie algebra. By means of this
generalized approach we obtain the Lax integrable fractional-differential Kadomtsev-Petviashvily
hierarchy, whose quasi-classical approximation leads to the Benney type hydrodynamic systems.

Let us consider the Lie algebra A, := Ag{{D%, D~“}} (see [1]), which consists of the fractional
integral-differential operators in the forms:

Ay 1= E ' ajDa(ma_J),
JEZ+

where Ay := A{{D,D7!}} is the Lie algebra of integral-differential operators, A := W5°(R;C)N
WX(R;C), D*: A — A is a Riemann-Liouville fractional derivative, « € C\Z, Rea # 0, my, € Z4
and aj € Ao, j € Z, and possesses the standard commutator [.,.] and invariant with respect to
this commutator scalar product:

(aq, ba) == / resp (resp, (aq 0 ba D™))dx,
R

where resp,, denotes a coefficient at D™ for any fractional integral-differential operator as well as
resp denotes a coefficient at D! for any integral-differential operator. The Lie algebra A, allows
the splitting into the direct sum of its two Lie subalgebras A, = A,y ® A, —, where A, | is the
Lie subalgebra of the formal power series by the operator D®.

One parameterizes the Lie algebra Ag by the variable y € S! and constructs the central extension
Aa := A, ® C of the Lie algebra A, := HyeSl A, by the Maurer-Cartan 2-cocycle wsaf(.,.) on A,
with the commutator:

[(aq,d), (ba,€)] = ([aa; ba,w2(aa,ba)),  (aa;d), (base) € ﬁav (1)
[aa, Do) = @q 0 by —bg 0 aq,  w2(ag,by) = /Sl(aa, 0bq /0y)dy.

-
)

The invariant with respect to the commutator (1) scalar product on Ay is given by the relationship:

((2a,d), (ba,e)) = /S1 (8, ba)dy + ed.

The Lie-Poisson bracket, deformed by the space endomorphism R = (Py — P_)/2: A, — A,, takes
the form:

{7 m3rla) = (s [RVY(a), Via(la)] + [VA(la), RVu(a)])+
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t+ewa(RVY(la), Viulla)) + cwa(Vy(la), RV p(la),
where v, € D(AY) are smooth by Frechet functionals on A¥ ~ A,, lo e A, ceC, Py being

(%)
projectors on A, +, and generate the infinite hierarchy of Lax type Hamiltonian flows:

Ol /0t; = [(Vj(la))+sla — /DY), (larc) € Lo, jEN, (2)

by means of the Casimir invariants v; € I(A}), j € N, as Hamiltonians. The Casimir invariants
satisfy the relationship:

[lo = 0/0y, V7;(la)] = 0,

and can be found in the forms:
vi(la) = / Tr(yD'*)dy, j€N.
yeSt

Here the coefficients of the operator [0 := Di* 4 Zkgj—l CwD*, k € 7, are such that dé’k/dx =
0 =dCy/dt;, j € N, and obey the equality:

7 70 —ra

(I — cD/0y) o ® = Do (IO — cd/Dy), ®=1+ ZreN &, D",
As an example, one studies the reduction of the hierarchy (2) on the coadjoint orbit related with
the element

lo = D** + D%+ 0D + 0 € AF,

where 4,0 € Ag, when ¢ = 1. Looking for the gradients of the Casimir invariants in the forms

Vyi(la) = D™ + D k<1 agjD*, m € Zy, k € 7, one obtains the hierarchy of fractional-
differential dynamical systems such as

da/dt, = t, + [0, ], da)dty =,
(6 + D*$D~*)/dt, = [D*, i — 6% D™, (b + D*DD ™) /dty = by,

di/dts = f, + [f, 1)

d(0 + D*6D™%) /dtz = G, + (gD, @] + [D*0 4+ 0D, 4] + [f,0D* + D*%])D~?,

[un D2a] = DO{[‘DOC?,LAL - ’&2]7

[f, D*] = —(,D** + D0, D + D**,) — [6D** + D**¢, 4] — [D, 9D + D] —
—[aD®, D*0] — [0, D*0*D*] — [§D*, 0 D* 4+ D*?],

The gradients of corresponding Casimir invariants are written as
7\ _ Do - - ka
V'YI(Z(V) =D +U+Zk§0ak’1D )
VAo(ly) = D** + (6 + DD ™) D* + 4 + Zkgo aga D™,
V3(la) = D** + (6 + DD~ + D**4D~24)D%* 4 pD + f + ZM arsDR, ,

where b = @ + D*4D~® + 9D*0D~® + §. The third system in the hierarchy (3) can be considered
as a fractional-differential analog of the Kadomtsev-Petviashvily equation.
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The theory of equations with variational (functional) derivatives is a fairly extensive area of
mathematics. This class of equations has numerous applications in statistical physics, quantum
field theory, hydromechanics and other fields. The theory of variational derivatives, differential and
integro-differential equations with variational derivatives is quite fully stated, for example, in the
monographs [1-3] and the works [4-10].

The problems that are formulated and investigated in this area of mathematics are similar to the
problems considered in the case of ordinary and partial differential equations. Explicit formulas for
solving equations with variational derivatives are known only in a few cases. This applies mainly
to the set of linear equations [5-8]. Therefore, the main methods for solving such equations are
approximate.

The problem of an approximate solution of equations with variational derivatives is not sufficiently
studied. When solving this class of problems, it may be useful to apply methods that take into
account the given initial and boundary values. In particular, in the Cauchy problem for an equation
of the n-th order, the desired functional F(z) can be approximately found from the values of the
functional F'(z¢) and its variational derivatives up to the (n — 1)-th order, which are known at the
point zo(t). For this, it is natural to use the operator interpolation apparatus [11, 12]. Consider
one of the ways for the approximate solution of equations with variational derivatives, based on
interpolation of the functional included in the equation.

We formulate the definition of the variational derivative for functionals defined on sets of functions
[9]. Let X be a linear space of real functions defined on a segment [a, b] of the real axis R, and F’
be an operator or functional given on the X.

The k-th order Gateaux differential 5% F[z; hy, ha, ..., hi] (k € N) of the mapping F' at the point
z € X in the directions hq, ha, ..., h; € X is defined by the equality

(sk_lF[:E + Ahg; b, ho, ..., hk—l] — 6k_1F[£L’; hi,ho, ..., hk—l]

L .
Flx; v hil =1 =
) [*L,h‘lah27 ahl\,] )\ILI}] 2

_ OFF (x + Ah1 + Aaho + ... + Aihy) 60F[3:] = F(z)
O -+ - O\ AM=...=Ap=0 ’
If there exists the k-th order Gateaux differential 6% F[z; hy, ha, ..., hi] (z,h; € X; i =1,2,...,k)

of the functional F' (z) at the point € X in the directions hi, ho, ..., hy € X, that can be represented
as

6’“F[x;h1,h2,...,hk]:/[ }ka(x;tl,...,tk)hl (t1) ...hy (tg) dty...dty, (1)
a,b

where a (x;ty,...,t;) is some function depending on =z = xz (s) and variables ti,...,t; € R, then
a(x;ty,...,tg) is called the variational derivative of the k-th order of the functional F'(z) with
§FF (x)
dx(ty) - - 0x(ty)
derivatives can be generalized functions and other types of functionals.
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As X, one can choose the space C|a, b] of continuous functions with a uniform norm, the Hilbert
space Lsla,b] or any other space such that the integral on the right-hand side of (1) makes sense.

We give formulas for the exact solution of some of the simplest differential equations with varia-
tional derivatives.

For example, for the equation

(;ZE;) = 2p (t) cosz (1) /O p(t)sinz () dt,

1 2
the solution is the functional F (z) = </ p (t)sinx (t) dt) , where p (t) and x (t) are elements of
0

space C0, 1].

b
The functional F (z) = / p(t) f [z (t)] dt is the solution of the equation OF () =pt) f'lz@)].

5 (t)

The solution of the equat?on
OF ()
ox(t)

has the form

1 1 2
F(z)= /0 [po (t) e(®) + p1 (t)sinz (t) — po(t) cosx (t) + % (/0 pa (t) 2 (1) dt) ] p(t)sinz (t) dt,

1
= po (1) M 4 p1(t) cosx (t) + po (t) sinx () + p3 (t) z (£) + p4 (¢) /0 pa (7)) (7)dT

where pg (t) (i = 0,1,...,4) are arbitrary functions for which reduced integrals exist.
Next, we consider a differential equation of the hyperbolic type with the second-order variational
derivatives:
(52U (Q?, y) 2 62’“ (CE, y)
IO R 1)

The solution of this equation is the functional

w(e,y) = fi [/ab<y<t>+a<t>x<t>>dt] b [/f@(t)—a(t)x(t»dt , 3)

where f1 (-) @ f2(:) are any functions that are twice differentiable on R. The representation (3) is
an analogue of the classical Dalamber formula.

We give the Hermite interpolation formula H (x,y) with respect to a single node of the second
multiplicity, which is an approximation to the solution u (z,y) of the Cauchy problem for equation
(2) with the initial conditions

=0@=a2(t)20.y=y(t), alt) #0; t€a,b) CR).  (2)

wlen,y) = v ), 5 = s ), 0

where ug (y) and wu; (y) are some functionals defined on Cla, b].

Theorem 1. An approzimate solution of the Cauchy problem (2), (4) can be represented as

b
H (z,y) = w0 (5) +us (o) [ (olt) — aoft) d + 30° O () [o(0) — w002 (5)

The proof of this theorem is based on a direct verification of the interpolation conditions (4).
Substituting the approximation H (z,y) of the form (5) to the solution u (x,y) of the equation
(2) in the left-hand side of equality (2), we obtain

5°H (x,y)
ox2(t)

62H(x,y) B
CO 5w



b
—a20) () [ (alo) ~ an(0) + 50 ()0l ) o) = o)) (¢ - ),

0, t+#0;
+o0, t=0.
0 and the equality (2) takes place for any (z,y) from the domain of definition.

The obtained results can serve as a basis for further research of the theory of differential equations
with variational derivatives that is not well developed, and can also be used to construct approximate
interpolation methods for solving some linear and nonlinear differential equations with variational
derivatives of the first and second order that are found in various applied fields and mathematical
physics.

where the delta function 6 (t) = We note that in the case t # s, the value § (t — s) =
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In this paper, we study the properties of the total and mean curvatures of a surface and its
dual image in an isotropic space. We prove the equality of the mean curvature and the second
quadratic forms. The relation of the mean curvature of a surface to its dual surface is found. The
superimposed space method is used to investigate the geometric characteristics of a surface relative
to the normal and special normal.

— —
Consider an affine space A3 with the coordinate system Ozyz. Let X (z1,y1,21) and Y (22, y2, 22)
be vectors of As.

— —
Definition 1. If the scalar product of the vectors Xand Y is defined by the formula
(X, YY) =zimo+ 31y i zia + 912 # 0, (1)

(X,Y)2 = 2129 if  zzo +y1y2 =0,

then Aj is said to be an isotropic space R3. [1, 2]

Geometry in a plane of an isotropic space will be Euclidean if it is not parallel to the oz axis.
When a plane is parallel to oz, the geometry on it will be Galilean.

Since an isotropic space has an affine structure, there is an affine transformation that preserves
the scalar product by formula (1). This motion of an isotropic space is given by the formula [5]

' =xcosa—ysina+a
Yy =xsina+ycosa+b (2)
Z/=Ax+By+z+c

The second sphere is defined as a surface with the constant normal curvature. This sphere of the

unit radius has the equation [8]
2?4+ y* =2z, (3)
we call it the isotropic sphere.

Let a plane 7 be given in R%, which is not parallel to the oz axis of the space. Consider the
section of the isotropic sphere by the plane m and denote it by I'. Since an isotropic sphere is a
paraboloid of revolution, the section I' by a plane is a closed curve. It was proved in [2] that T is
an ellipse.

Draw tangent planes to isotropic sphere (3) through pointsM € I'. Denote the set of tangent
planes to points /' by {7}.

The following statement holds.

Theorem 2. All planes of the set {m} intersect at one point. 6]
If a plane 7y is given by the equation
z=Ax+ By +C, (4)
then the intersection point of the planes of the set {r} will be (4, B, -C).
Definition 3. The point (A, B, —C') will be called dual to plane (4) with respect to isotropic sphere

(3)- [6]
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Let us draw the tangent plane mps to the surface F' at the point M (xo,yo, 20). Denote by M* the
dual image of the tangent space my; with respect to the isotropic sphere. When the point M € F
changes on the surface F, its dual image describes a surface ™.

Definition 4. . The surface F* is said to be the dual surface to the surface F' in an isotropic
space. [6]

When F is given by the equation z = f(z,y), F* has the equations
™ (u,v) = fu(u,v)
y*(u,v) = fi(u,0) (5)
2 (u,v) = u- fi(u,0) +v- fo(u,v) = fu,v)
Lemma 5. When the total curvature of a surface K =0, its dual image is a point or a curve.

Theorem 6. The product of the total curvatures of the surface Fand the dual surface F* of the
1sotropic space is equal to unity:

K-K*=1. (6)

%
Lemma 7. The specml mean curvatures of the surfages given by the functions Rl(u v)=fur i+
fo- ] + fu- k and Rg(u v) = fu- z + fo- j + fv - k, are calculated, respectively, by the formulas

fuvv (fuu + fuv) 2fuuv (fuufuv + fm Jov ) + fuuu (fuv + fm;) (7)
[ UL - 7'1) . fI/l/’U2]
fmm (fuu + fuv) 2fuvv (fuufm + fuvav) + fuuv (fuv + fvv)

{ "o f£1 " 2]

Hm(Rl) =

Hp(Rp) = (8)

uuJ vv uv

— —
Lemma 8. The mean curvatures of the surfaces, given by the functions Ry(u,v) and Ra(u,v), are
equal to zero.

Lemma 9. The mean curvature and special mean curvature of the dual surface (5) and the surfaces
Ri(u,v), Ra(u,v) are connected by the equality:

H' =H" +wu-Hpy(Ry)+v-Hy(Rs). (9)

Theorem 10. The mean curvatures defined with respect to the normal and the special normal are
equal: H} = H".

Theorem 11. If Q2 = 0, then the special total curvature of the surface F* is expressed in terms of
the special total curvatures of the surfaces F, Z1, and Zs.
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Let X be a compact Hausdorff space. By exp X we denote a set of all nonempty closed subsets
of X. A family of sets of the view

n
OU1,...Up) ={F€exp X: FC|JUn,FNU1 #2,..FNU, # 2}
i=1
forms a base of a topology on exp X, where Uy, ..., U, are open nonempty sets in X. This topology
is called the Vietoris topology. A space exp X equipped with Vietoris topology is called hyperspace
of X. For a compact space X its hyperspace exp X is also a compact space.
Let f: X — Y be continuous map of compacts, F' € exp X. We put

(exp f)(F) = f(F).
This equality defines a map exp f: exp X — exp Y. For a continuous map f the map exp f is
continuous. Really, it follows from the formula [2]

(exp f)THO(UL, oo, Um) = O(fTHUL) ooy fH(Un))
what one can check directly. Note that if f: X — Y is an epimorphism, then exp f is also an
epimorphism.

For a Tychonoff space X we put

expg X = {F €expfX: F C X}.

It is clear, that exps X C exp BX. Consider the set expg X as a subspace of the space exp 5.X.
For a Tychonoff spaces X the space expg X is also a Tychonoff space with respect to the induced
topology.

For a continuous map f: X — Y of Tychonoff spaces we put

€XPg f= (exp 5f)|expﬂX )

where ff: X — BY is the Stone-Céch compactification of f (it is unique).
For a Tychonoff space X put
exp(Homeo (X)) = {exp(g) : g € Homeo (X)}.
Proposition 1. For an arbitrary Tychonoff space X we have

exp(Homeo (X)) C Homeo (exp(X)).

Note that the inclusion cannot be reversed.

Example 1. Let X = {a, b} be a two-point discrete space. Then exp X is three point discrete
space. There exist only two homeomorphisms of X onto itself: h, h’: X — X, defined by the
rules h(a) = a, h(b) = b and h'(a) = b, h/(b) = a. At the same time exp X has six different
homeomorphisms four of them could not be generated by h and h'.
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For a topological transformation group (G, X, ) we put
exp(G) = {exp(ay) : g € G},

here oy (z) = g(x).

Let Uy be an open in G neighbourhood of an element g € G. we define a set Ueyp(o,) = {exp(ay) :
h € Uy} and put

%GXP(QQ) = {UGXP(O‘Q) : Ug € TG}’

here 7 is the topology on the space G. It is easy to check that the family B ) forms a
neighbourhood system of the point exp(ay) € exp(G).

Theorem 1. The set exp(G) is a topological group with respect to the operation exp(cy, ) exp(ag,) =
exp(ag,g,). Moreover, exp(ae) is a unit of the group exp(G) and exp(ay)~! = exp(ay, 1), g € G.
Now for « it is possible to define the action a®P: exp(G) x exp(X) — exp(X) by the rule
a®P(exp(ay), F) = exp(ay)(F).

Proposition 2. For the topological transformation groups (G, X, «), the triple (exp(G), exp(X), a®™P)
18 a topological transformation groups.

Proposition 3. If the set A C X is G-invariant, then the set exp(A) is exp(G)-invariant.

Proposition 4. For a topological transformation group (G, X, «), we have
ker a®P = exp(ker o).

Here ker o = {exp(ay) € exp(G) : exp(ay)(F) = F,VF € exp(X)}, explkera) = {exp(ay) €
exp(G) : g € ker a}.

Proposition 4 immediately implies
Corollary 5. The action a*P is effective if and only if the action « is effective.

Note that for the transitive action « of the group G on the space X, the action a®® induced
from a may not be transitive.

Example 6. Let X = {z1, z2, x3} be the discrete topological space (all three points are different).

Let
G- 1 2 3 1 2 3 1 2 3
o 1 2 3/)°\2 3 1)°\3 1 2

— the discrete topological group of permutations of the index set {1, 2, 3}. The action a: GxX — X
of the group G on the space X is defined by the rule a(g, ;) = x,(;). Then a is a transitive action.
Moreover, ay(z;) = x4¢). It is clear that exp(ay)({z1, ¥2, ¥3}) = {71, 72, 23} for each g € G.
Thus, for no closed subset F' C X there is no element exp(ay) of the group exp(G) for which
exp(ag)(F) = @, here & = {x1, x9, 3}, F # ®. Therefore, the action a®*® is not transitive.

Example 6 shows that the action of the group exp(G) on the space exp(X) may not be free,
although the action of the group G on the space X is free. But, nevertheless, the following is true.

Proposition 7. Let X = {x1, ..., x,} be a finite discrete space, G an arbitrary permutation group
(supplied by the discrete topology) of the set X. Then, for each free action « of the group G on
the space X, the corresponding action P of the group exp(G) on the space exp(X) is semi-free.
In this case, the only point in the space exp(X) that remains motionless under the action of all
elements of exp(G) is the set {x1, ..., Ty }.

It is clear that if G is a compact group, then exp(G) is also a compact group.
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Theorem 8. The action a®™P: exp(G) x exp(X) — exp(X) of the compact group exp(G) on the
space exp(X) is a closed map.

The next statement follows from Theorem 8.

Corollary 9. If G is a compact group and X is some G-space, then for any closed set A C exp(X)
the set exp(G)(A) is closed in exp(X) and for compact A the set exp(G)(A) is compact.

Theorem 10. If f: X — Y is an equivariant map of one G-space to another, then exp(f): exp(X) —
exp(Y') is also an equivariant map of exp(G)-spaces.

The normality of the functor exp and Theorem 10 imply

Corollary 11. If f: X — Y is an equivalence of G-spaces X andY, then exp(f): exp X — exp Y
is an equivalence of exp(G)-spaces exp X and exp Y.
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This article deals with the construction of the Carleman function for matrix factorizations of the
Helmholtz equation in a multidimensional domain.

It is known that the Cauchy problem for elliptic equations is unstable relatively small change in
the data, i.e., is incorrect (Hadamard’s example). In unstable problems the image of the operator
is not closed, therefore the solvability condition can not be written in terms of continuous linear
functionals. Thus, in the Cauchy problem for elliptic equations with data on a part of the boundary
of the region, the solution is usually unique, the problem is solvable for an everywhere dense set of
data, but this set not closed. Consequently, the theory of solvability of such problems is essentially
It is more difficult and deeper than the theory of solvability of the Fredholm equations. The first
results in this direction appeared only in the mid-1980s in the works of L.A. Aizenberg, A.M.
Kytmanov, N.N. Tarkhanov (See, for instance [1]).

Let x = (x1,...,Zm ),y = (Y1, ..-,Ym) be are points of the Euclidean space R™ and G C R™ be
a bounded simply-connected domain with piecewise smooth boundary consisting of the plane 7"
ym = 0 and of a smooth surface S lying in the half-space v, > 0, that i.e., 0G = S|JT.

We consider in the domain G a system of differential equations

D ((fx) Ulz) =0, (1)

ox
We denote by A(G) the class of vector functions in a domain G continuous on G = G |J G and
satisfying system (1).
We define the function ®(y, z; \) at y # x by the following equalities:

1 g1 T K(w) | ulp(Au)
@ ": — I = 2 > 1

(y, 254) cm K () OsF—1 / m [w - xm] u? + a? du, m = 2k, k 2 1, @)
0

0
where D <> is the matrix of first-order differential operators.

oo
1 k=1 K(w) |1 cos(Au)
Oy, o A) = I du,m=2k+1, k>1,
(W, @ 2) emK (Tm) 8sk—1/ m [w—xm] VuZ ¥ a2 s m + (3)
0

where

at m =2k, k> 1; co = 27, ¢y = (—1)F27%(m — 2)7wn (K — 1)1, Io(Au) = Jo(idu)—is the Bessel
function of the first kind of zero order;

at m=2k+1,k>1; ¢, = (=1DF27%2k — 1)!(m — 2)7wm, wm— the area of a unit sphere in
space R™,

In the future, using formulas (2) and (3), we will construct the Carleman matrix for matrix
factorizations of the Helmholtz equation in multidimensional bounded domain and based on it we
will find an approximate solution to the Cauchy problem in explicit form, using the methodology of
previous works (See, for instance (2], [3], [4], [5], 16], [7], [8], [9], [10], [11], [12], [13], [14], [15], |16],
[17] and [18]).
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Measuring the rate of convergence in the Birkhoff ergodic theorem
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There are two different approaches to the measuring of the rate of convergence in Birkhof’s
ergodic theorem; see the discussion in [1].

The first one, closely related with probabilities of large deviations, was studied in [2]. Now
this approach is well developed. There were obtained estimates of the rate of convergence in the
Birkhoff ergodic theorem for many classes of dynamical systems popular in applications, including
some well-known billiards and Anosov systems [3].

The second approach (pointwise rate of convergence) was studied in [1] and [4], and many
interesting questions still are open here.
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Let (N,0N) be a smooth surface with the edge ON (ON can be empty). Let C°°(V) denote the
space of infinitely differentiable functions on N with edge ON = d_N U d+ N, all critical points of
which are isolated and lie in the interior of N, and, furthermore, on the connected components of
the edge 0_N (04 N) the functions from C*°(N) take the same values a (b accordingly).

Two functions f; and fo from the space C°°(N) are called topologically equivalent if there are
homeomorphisms . : N — N and b/ : R — R! (W’ preserves orientation) such that fo = h'o fioh™1.
If h preserves of the orientation, the functions f; and fy are called topologically conjugated (eg. [2])
or O-topologically equivalent (eg. [6]).

It is known [2]| that a function f € C°°(N), in a certain neighborhood of its isolated critical
point x € N (which is not a local extremum) for which the topological type of level lines changes
in passing through z, is reduced by a continuous change of coordinates to the form f = Rez" + c,
n > 2 (are called «essentially» critical point) or f = Rez if the topological type of level lines does
not change in passing through x. The number of essentially critical points x; of the function f,
together with the values of n; (exponents in there presentation f = Rez™ + ¢; in the neighborhoods
of the critical points z;), are called the topological singular type of the function f.

The problem of the topological equivalence of functions from the class C°°(N) with the fixed
number of critical points was completely solved by V.V. Sharko in [3]| and it was established that
a finite number of topologically nonequivalent functions of this class exist. However, it should
be noted that the task about calculation of topologically non-equivalent functions with the fixed
topological singular type is rather complicated and is still unsolved.

When considering functions from the class C'(M,) C C°°(N) that possess only one essen-
tially critical point xg (degenerate critical point of the saddle type) in addition to local maxima and
minima on oriented surface M, of genus g > 0, then the problem of counting the number of such
non-equivalent functions is greatly simplified. It is well known [2] that Vf € C(M,) the Poincare in-
dex of a critical point zg, is equal indf(xo) =1—mn, where n =29 — 14 X and X is a total number
of local maxima and minima.

Let C), (M) be a class of functions from C(M,) which, in addition to local maxima and minima,
have only one essentially critical point, whose the Poincare index is equal (1 —n). Denote the class of
functions from C(M,) that possess one essentially critical point, k£ local maxima and [ local minima
by Cki(My). Then it is clear that Vf € Cy (My) n =29 —1+k+1.

In the general case, for natural g, k,l (or k, [, and n = 29+ k41 — 1), the problem of calculating
the number of topologically non-equivalent functions from the class Cy, (M) also has proved to be
quite a difficult and unsolved problem to date.

The task of calculating the number of topologically non-equivalent functions from the class
C1,1(My) (for genus g > 1) was completely solved in [4]. In [5], for natural k£ and [ solved completely
the problems of calculating the numbers O-topologically and topologically non-equivalent functions
from the class Cj;(Mp) (on two-dimensional sphere).

In [6], [7] solved completely the problems of calculating the numbers O-topologically and topo-
logically non-equivalent functions from the class Cy ,—2(M;) and Cq ,—4(Ms) accordingly.

In general case, for functions from the class C1 ,,—24(My), the task is also still unsolved.

By using the results of [1] we can establish the validity of the following statement
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Theorem 1. For natural n > 7 the number d*(n) of O-topologically non-equivalent functions from
the class C1 n—6(M3) can be calculated by the relation

" 1 . n
d(n) = — | d(n) + > o) p (n.2) ] (1)
gln, §€{2;3;4;6;7;8;9;12}
where:  ¢(q) is the Euler totient function;
1
d(n) = 502 41 (9n* = 18n® — 57n? + 34n + 80); (2)

Vje N : ? ¢ N the value p(n, ?) =0; Vje€{23;4;6;7;8;9;12} : % € N the value of

P (n, ?) can be calculated by the relations

pnds) =4 p(nf) =% pg) =% p(n3) =% plf) ="
o (n7 76L) n(7;;6)’ P (TL, n) n(n—3)(n;g)(3n+29)’ P (n7 %) _ TL(TL*?)(n—4)(7L;2)0(§(')7n2+294n—2320) ‘
(3)
n d(n) d*(n) | n d(n) d*(n)
7 180 30|19 1 801 329 010 94 806 790
8 3 044 385 | 20 3 600 529 450 180 028 084
9 26 060 2900 | 21 6 925 187 830 329 770 930
10 152 900 15 308 | 22 | 12 869 925 310 584 999 362
11 696 905 63 355 | 23 | 23 190 544 696 | 1 008 284 552
12 2 641 925 220 242 | 24 | 40 637 416 600 | 1 693 230 295
13 8 691 683 668 591 | 25 | 69 427 501 000 | 2 777 100 040
14| 25537655 | 1824 311 |26 | 115901 728 800 | 4 457 765 752
15| 68 396 900 | 4 559 818 | 27 | 189 426 912 675 | 7 015 811 753
16 | 169 537 940 | 10 596 558 | 28 | 303 616 322 295 | 10 843 450 498
17 | 393 481 660 | 23 145 980 | 29 | 477 960 911 025 | 16 481 410 725
18 | 862 928 092 | 47 941 370 | 30 | 739 984 318 125 | 24 666 159 267

TABLE 1.1. Number d*(n) of O-topologically non-equivalent functions from the class C ,—6(M3)
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Let consider a function realizing homeomorphism of the closed unit disk onto the closure of simply
connected domain in the complex plane bounded by a smooth Jordan curve conformal in the open
unit disk. Let suppose that boundary of this domain is characterized by the angle between the
tangent to the curve and the positive real axis considered as the function of the arc length on the
curve.

O. D. Kellogg in 1912 proved the theorem in which it had been established that if this angle
function satisfies Holder condition, then the derivative of the function realizing mapping of unit disk
onto the closure of the given domain satisfies Holder condition with the same index. Connection
between properties of the boundary of the domain and properties of the considered function was
investigated in works by numerous authors: S. E. Warshawski, J. L. Geronimus, S. J. Alper, R.
N. Kovalchuk, L. I. Kolesnik, P. M. Tamrazov (more detailed see [1-3], [5] and [6]). Some close
problems were investigated by V. A. Danilov, E. P. Dolzenko, E. M. Dynkin, N. A. Shirokov, S. R.
Bell and S. G. Krantz, V. V. Andrievskii, V. I. Belyi, B. Oktay, D. M. Israfilov and others (more
detailed see [3 5] and |7]).

Certain results in terms of moduli of smoothness of different types (uniform curvilinear, arith-
metic, local and integral moduli of smoothness of arbitrary order) were received by author. In
particular, some estimates for integral moduli of smoothness were considered in [4-6].

Let wy .(f(2),0) be a noncentralized local arithmetic modulus of smoothness of order k (k € N)
of the function w = f(z) at a point z on the curve 7 [1]. Let consider the integral modulus of
smoothness of order k for the function w = f(z) on the curve v introduced in [2] by the formula

1/p

Or(f(2),0) = | [lwk(f(2),0)]” d)\(z)} , 1 < p < +oo, k € N, where A = A(z) is the linear
¥

Lebesgue’s measure on the curve.

Let G; and G5 be the simply connected domains in the complex plane bounded by the smooth
Jordan curves I'; and T's. Let 71(s1) be the angle between the tangent to I'y and the positive real
axis, s1(z) be the arc length on I';. Let 72(s2) be the angle between the tangent to I's and the
positive real axis, so(w) be the arc length on I's. Let w = f(z) be a homeomorphism of the closure
G4 of the domain G; onto the closure Gy of the domain G4, conformal in open domain Gj.

Theorem 1 ([5]). If integral moduli of smoothness Wi (7i(s1),0) and @,(12(s2),0) of order k (k €
N) for the functions 11 (s1) and T2(s2) satisfy Holder condition ©Ok(11(s1),d) = O(6%) (& — 0)
and Wi (T2(s2),6) = O(6*) (0 — 0), with the same index o, 0 < a < k, then integral modulus
of smoothness Wi(f'(2),0) of the deriative of the function f(z) on 'y satisfies Holder condition
WL(f'(2),0) = O(6%) (6 — 0) with the same index c.

Theorem 2 (|6]). If integral moduli of smoothness @ (71(s1),0) and @i (12(s2),0) of order k (k € N)
for the functions 71(s1) and T2(s2) satisfy condition @i(r1(s1),8) = O(6%log3) (6 — 0) and
Wi(12(s2),8) = O(6Flog §) (6 — 0), then integral modulus of smoothness Gy (f'(2),8) of the de-
rivative of the function f(z) on Iy satisfies condition Gy (f'(2),8) = O(6*log %) (6 — 0).
Theorem 3. Let integral moduli of smoothness W (7i(s1),0) and ©i(m2(s2),8) of order k (k €

N) for the functions 11(s1) and To(s2) satisfy conditions Wk(11(s1),d) = O(w(d)) (6 — 0) and
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l
Wr(12(s2),0) = O(w(d)) (6 — 0), where w(d) is normal majorant satisfying the condition [ @dt <

0
+oo. Then integral modulus of smoothness Wy (f(2),0) of the function f(z) on T'y satisfies the
condition @i (f(2),0) = O(a(0)) (6 = 0), where o(d) is some integral magjorant.
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Integration over non-rectifiable curves: spirals of high torsion
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The presentation is devoted to some new results related to the classical problem of complex
analysis - the Riemann boundary value problem. We, however, consider it on a non-rectifiable
curve and pay considerable attention to the geometric features of the curve. In this case, we will
talk about spirals, which we will classify depending on the speed of it’s twisting. We consider the
geometric properties of arcs in the neighbourhood of their ends.

Let us consider first a well known boundary-value problem of complex analysis — so called Riemann
problem on a simple Jordan arc (see, for instance, [1, 6, 3]).

Given a directed Jordan arc I' in the complex plane C with beginning and end at points a; and
as relatively, and two functions G(t), g(t), t € I'. Find all holomorphic in C\T functions ®(z) which
vanish at oo and have boundary limits ®*(¢) from the left and from the right correspondingly at
any point ¢ € I\ {a1, a2} such that

() =G (t) +g(t), teT\{ar,az}. (1)
In addition, the desired function ® must satisfy certain conditions on its growth at the end points
ai,2.
In numerous classical works (see [1, 6, 3] and many other) the solutions of this problem are
obtained in terms of Cauchy type integrals. Particularly, a solution of so called jump problem

T (t) =0 (1) + g(t), teTl\{a1,aa}, (2)

on piecewise - smooth arc I' is representable as the Cauchy type integral

O(2) = L /g(t) 2t 2¢T. (3)

Comi ) t—2’
r

As a result, in all classical works on this problem the boundary I' is assumed rectifiable, although
the formulation of the problem does not imply this restriction. It keeps the sense for non-rectifiable
arcs, too. The Riemann boundary-value problem for non-rectifiable boundaries was solved first in
the papers [4, 5, 6, 7].

We introduce the concept of torsion of arc I' [8]. The torsion of arc I' at point a;, j = 1,2 is a
value

7 = inf {p >0: / | K1 (2)|YPdx dy < oo} ,

where integral is taken over a neighborhood of a;. If 7; < 1, then we say that the arc has moderate
torsion at point aj, otherwise its torsion is high. This value characterizes the rate of curling of I'
around the point a;.

As it appears, the torsion concept is very closely connected with the integrator concept that we
introduced earlier - and this allows us to get some new results in this geometric terms.
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On real X*-algebras of operators
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Real X*-algebras of operators are introduced and their connections with (complex ) X*-algebras
and real von Neumann algebras are discussed.

1]

2]
(3]
[4]

[5]
(6]

[7]
(8]
(9]
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[11]
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coefficients controlled by the Dirichlet boundary condition on a
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Consider the heat equation
1
wy = p (kwg), +yw, x € (0,+00), t € (0,7), (1)

controlled by the Dirichlet boundary condition

w(0,-) = u, te (0,7T), (2)
under the initial condition

w(-,0) = w?, x € (0,+00), (3)

where T = const > 0; p, k, 7, w” are given functions; v € L*(0,T) is a control. We assume
p,k € CH0,+00), p>0and k >0 on [0,4+00), (pk) € C?[0,+0c0), (pk)'(0) = 0, and

o(x) = /Ox Vel /E(w) dp — +oo as r — +00.

In addition, we assume

(P(k,p) — ) € L=(0,+00) ﬂCl [0, +00) and U\/g(P(k,p) — ) € LY(0, +o0),

! 2
4 _1 /k k(K | p 1 k(K '
where Pkp) = 4/ (5 (5 +5)) + (/5 (B +5))
1/4
Control system (1) (3) is considered in modified Sobolev spaces. Denote n = (kp)1/4, 0= (%) ,
D9 = 02 (% + 7—;) Denote also Ry = (0,4+00). For p = 1,2, denote

H} = {90 € Lic(R+) | (%P) € LQ(R+)}7 I = {<p e ! | (ng;ego) € L*(Ry) and ¢(0) = o},

with the norm

s 2
-5 (1550 =
= - e H =0,1,2
”@”«} Tnz_:o (H 9 77080 LQ(R+) 9 SO 9 S ) Ly
and the dual spaces ]ﬁl;s = (]ﬁli) with the norms associated with the strong topology of these
spaces, s = 0,1, 2.

We suppose (%)pw :[0,T] — ]Itllfp, p=0,1,and w° € IF]IQL in system (1)—(3).
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Let 7 > 0 and w’ € ]ﬁlg By Rr(w?), denote the set of all states w’ € ]ITI[S)r for which there exists
a control u € L>(0,T) such that for the solution w to system (1)—(3) we have w(-,T) = w”.

Definition 1. A state w® € IF]IQF is said to be controllable to a state w! € ]ﬁl(_)|r with respect to
system (1)—(3) in a given time 7' > 0 if w” € Rp(w?).

Definition 2. A state w’ € IFHQF is said to be null-controllable with respect to system (1)—(3) in a
given time T' > 0 if 0 € Ry (w?).

Definition 3. A state w € IFH& is said to be approximately controllable to a state w’ € fﬁl& with
respect to system (1)—(3) in a given time T > 0 if w’ € Ry (w"), where the closure is considered in
the space ]ng.

Consider also control system with the simplest heat operator (the case p =k =1, v =0)

ct = Zyys y e (07 +OO)7 s (OaT)v (4)
2(0,) = v, te (0,7), (5)
2(-,0) = 2, y € (0,400), (6)

where v € L*°(0,T) is a control, (%)m z:[0,T] — ﬁ;Qm, m=0,1,w’ € FI_? = L*(R,). Here
s = {gp € L*(R,) | (Vk —0,5 o ¢ LQ(R+)) and (Vk =05 -1 pW(0t) = o)} . 5=0,1,2,

with the norm

ol = |3 (3) (6@ le)’s et s=0.12

k=0

~ ~ *
and H® = (Hi) with the norms associated with the strong topology of these spaces, s =0, 1, 2.

Controllability problems for system (4)—(6) were investigated in [1].
To study controllability problems for system (1)-(3), we use the transformation operator T :

H;z — ]ﬁlﬁ. It was introduced and studied in |2]|. In particular, it has been proved therein that T
is a continuous one-to-one mapping between the spaces H® and H*, s = —2,—1,0.

In the present talk, we prove that the transformation operator T is one-to-one mapping between
the sets of the solutions to system (4)—(6) and to system (1)—(3). The application of the operator
T allows us to conclude that the control system (1)—(3) replicates the controllability properties of
the control system (4)-(6) and vice versa. A relation between controls u and v is also found. Thus,

we obtain the following main results.

Theorem 4. If a state w® € IF]IS)F is null-controllable with respect to system (1)—(3) in a time T > 0,
then w® = 0.

Theorem 5. Each state w° € ﬁlg is approzimately controllable to any target state w’ € ]IA-]/IE)F with
respect to system (1)—=(3) in a given time T > 0.
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Perfect metrizability of the functor of idempotent measures
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Let R be the real line. The set RU {—oc0} considered with operations: addition @ and multipli-
cation ® defined as u @ v = max{u, v} and u ® v = u + v, denotes by Ryax. Let X be a compact
Hausdorff space, C'(X) the algebra of continuous functions ¢: X — R with the usual algebraic
operations. On C(X) the operations & and © we define as ¢ ® ¢ = max{p, ¥}, ¢ © 1 = p + Y,
A®p =@+ Ax here ¢, ) € C(X), XA € R. Recall [1] that a functional p: C(X) — R is said to be
an idempotent probability measure on X, if: 1) u(Ax) = A for each A € R; 2) p(A® ¢) = p(e) + A
forall A € R, ¢ € C(X); 3) ulp @v) = ule) ® u() for every ¢, v € C(X). The set of all
idempotent probability measures on X we denote by I(X). Consider I(X) as a subspace of RE(X),
The topological space I(X) is compact [1]. For a given map f: X — Y of compact Hausdorff
spaces the map I(f): I(X) — I(Y) defines by the formula I(f)(u)(¢) = pleo f), p € I(X), where
¢ € C(Y). The construction I is a normal covariant functor, acting in the category of compact
Hausdorff spaces and their continuous maps. For p € I(X) we may define the support of p :
supppu =N{AC X: A=A, u€ I(A)}. For a point x € X by the rule §,(p) = p(z), ¢ € C(X),
we define the Dirac measure d, supported on the singleton {x}.

Put

Us(X) = {)\: X — [—o0, 0] | A is upper semicontinuous and there exists a
xo € X such that A(zg) = 0}.
Then we have
I(X) = {@)\(9@) OF MR W= US(X)} .

zeX
We define a subset

I,(X) = {@A(m)@é,p: AeUg(X), {x € X: ANz) > —o0}| < oo} C I(X).
zeX

1,(X) is everywhere dense in 1(X) [1, 2]. Put

E e)‘l(x)+)‘2(y) . p(aj’ y)
(z,y)€Esupp§

P2(M1a HZ) = inf Z e/\l(x) . Z e)\2(y) . 5 S A12 )
xEsupp i1 yEsupp iz
where p; = @ Ni(x) ©0, € I,(X), i =1, 2. Further, for every pair u, v € I(X) take consequences
zeX
{pn}, {vn} C 1,(X) such that lim p, = p and lim v, = v, and put
n—oo n—oo

pr(p, v) = 1im po(pin, vn).

The function pr is a metric on I(X) generating the pointwise convergence topology on I(X) and
the restriction of which coincides with the metric p on X.

Consider a system 1 consisting of all mapgs ¥x: I?(X) — I(X), acting as the following. Given
M € I?(X) put ¥x(M)(p) = M(p), where for any function ¢ € C'(X) the function p: I(X) — R
defines by the formula @(1) = p(y). Fix a compactum X and for a positive integer n put ¢p41,, =
1/}]n—1(X): In+1(X) — I"(X). Note that V11 pn © Ny, nt1 = Id[n(X).
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Lemma 1. ¢y o: (I*(X), pr2) — (I(X), pr) is a non-expanding map.
zg? N)
Lemma 3. If pr(p, no,1(X)) = € then pr2(I(no, 1) (1), m,2(I1(X))) = e.

Theorem 4. The functor [ is perfect metrizable.

Lemma 2. For each N € wl_’%](,u) we have pr(u, 0z,) = pr2(ds
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Quasiareal deformation of surfaces of positive Gauss curvature
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In this paper it is considered quasiareal deformation of surfaces, which we will call also briefly
QA-deformation. Quasiareal deformation is understood as an infinitesimal deformation of the first
order with the given law of changing the element of area of a surface in Euclidean three-space.

Let U(ml,xQ) be a field of velocities of the points of the surface ¥ = 7 (:cl,xQ) at the initial

moment of the deformation, such that U = U°7F, + UR, where 7,7, i = 1,2, are the basis vectors.
The fundamental equations of the quasiareal infinitesimal deformation, which are expressed in terms
of the components of the partial derivatives of the field U, are derived in [2].

It has been established: in order that the field U € C! be a deforming field of the quasiareal infin-
itesimal deformation it is necessary and sufficient that the components U, U? satisfy the equation

U% —2HU" = -2y, (1)

where the function p expresses the law of changing the element of area.

It is evident, that the class of the QA-deformation is very wide since one differential equation (1)
contains four unknown functions. It is expedient to study such deformation under the additional
geometrical or mechanical conditions. For example, for the surface of positive Gauss curvature (K >
0) on the condition that 67 = 0 under the quasiareal infinitesimal deformation we have additional
elliptic partial differential equation of the second order with respect to the normal component of
the deforming field

K ’
d*fu? ;- ?‘ldaﬁU}} +2HU® = 2p. (2)

The Riemann domain 7" has been described, in which the regular solution of the equation (2)
exists for the regular surfaces of positive Gauss curvature, this solution is a continuous, non-zero
everywhere in closed domain 7. This condition is a sufficient sign of the existence and uniqueness
of the solution of the Dirichlet problem for the equation (2) [1].

The corresponding theorems have been formulated for the QA-deformation of the surfaces of pos-
itive Gauss curvature. QA-deformation in class of surfaces of constant mean curvature is discussed,
for example, in a paper 3] and deformations preserving Gauss curvature in a paper [4].
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Canonical infinitesimal deformations of metrics of
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Difference of metric tensors of two pseudo-Riemannian spaces is called their deformation. Let V,
— be a pseudo-Rimeannian space with a metric tensor g;;, and V,, — a pseudo-Riemannian space
with a metric tensor g;;. Let us suppose that metric tensors differ by an infinitesimal small number
Yij, Or

9ij = 9ij + Vij- (1)
Infinitesimal small numbers with an order above the first one will be discarded. Then, the following
expression is true for tensors that are reversed in respect to metric tensors.
77 =97 = 49" Yas.
Components of tensor v;; are called components of the tensor field of velocities of infinitesimal small
deformation.

While calculating other inner geometric objects, there is often a need to discard certain param-
eters. This way leads to the research on infinitesimal deformations of a metric. In this sense,
infinitesimal parameters are parameters, which can be discarded not affecting the completeness of
the problem under study.

Infinitesimally small deformation of type (1) of pseudo-Riemannian space (V},, g;;) is called canon-
ical deformation when deformation tensor dg;; can be represented in a shape

1 2
Yij = Tgij + TR;j,

where 71,72' — are some invariants [1, 2].

Since Saint-Venant’s times, the deformation research is reduced to analysis of a system of differen-
tial equations. Saint-Venant’s equations are the main tool for research on infinitesimal deformations.
Saint-Venant’s equations are understood here as a set of equations defining the deformation tensor
in such a way that the space remains an Euclidean space.

Generalized Saint-Venant’s equations are conditions under which Riemann tensor is preserved
under infinitesimal deformations of a metric tensor of a pseudo-Riemannian space. They are differ-
ential equations in covariant derivatives in respect to tensors of Ricci and Riemann.

Conditions, which are imposed on tensors used for research on infinitesimal deformations, are
both algebraic and differential. Having carried out the research of this type we are able to answer
the question: whether the Saint-Venant’s equations are true under the pre-defined conditions.

The research is carried out locally in tensor form, without limitations on a sign of a metric tensor.
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Let T be a family of curves v in R, n > 2. A Borel measurable function p : R™ — [0, o] is called
admissible for T, (abbr. p € admT), if

/p(az) ds > 1
5
for any curve v € I'. Let p € (1,00). The quantity
M) = int [ ) dmo)
Rn
is called p—modulus of the family I'.
For arbitrary sets E, F' and G of R" we denote by A(FE, F,G) a set of all continuous curves
v : [a,b] — R™, that connect F and F in G, i.e., such that y(a) € E, v(b) € F and ~(t) € G for
a<t<b.
Let D be a domain in R, n > 2, 29 € D and dy = dist(xo,dD). Set

A(zo,m1,72) ={x € R" : 1y < |x — x0| < 12},
Si = S(xo,m) ={x eR": |z —xo| =13}, i=1,2.

Let a function @ : D — [0, 00| be Lebesgue measurable. We say that a homeomorphism f: D —
R"™ is ring @-homeomorphism with respect to p-modulus at xzg € D, if the relation

My(A(fS1, fSa. fD)) < / Q) 1P (| — o) dm(z)
A

holds for any ring A = A(xg,r1,72), 0 < r1 < 1o < dy, dy = dist(xg, D), and for any measurable
function 7 : (r1,72) — [0, 00] such that

T2

/n(r)dr—l.

T1
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Denote by wy,—1 the area of the unit sphere S"~! = {z € R" : |z| = 1} in R" and by ¢y, (r) =

ﬁ J Q(z)dA the integral mean over the sphere S(zg,r) = {z € R": |z — x9| = r}, here
" S(zo,r)
dA is the element of the surface area. Let L(zo, f,R) = sup |f(x)— f(zo)].
|[x—zo|<R

Theorem. Suppose that f : R™ — R"™ is a ring Q-homeomorphism with respect to p-modulus at
a point xg with p > n where xg is some point in R™. Then for all numbers ro > 0 the estimate

_p=1
R dt p—n p=1
—n p—n
lim | L(xo, f,R) /nll ><p—1> >0
R—o0 vo tPT qrt(t) b
holds.
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In recent years, the expansion of probability theory and measure theory from real values to values
in hypercomplex numbers are actively studied because of their possible applications in mathematics
and physics [1] — [5]. In this paper, we extend the notion of probability measure to the case where
the measure takes values in the algebra of bihyperbolic numbers [6]. In addition, the concept of the
real-valued measure is generalized to the quaternionic-valued measure [7].

The bihyperbolic numbers forms a 4-dimensional algebra over the field of real numbers W, =
{ap + a1e + aof + asg, a; € R, i =0,1,2,3} with basis {1, e, f, ¢} and the following multiplications
e=f=g*=1, ef=fe=g, eg=ge=f, fg=gf =c

Lemma 1. [8] Any bihyperbolic number o can be represented as o = 111 + i + 1313 + 1414, where
i are idempotents of algebra Wy, rp, e R, k= 1,2, 3,4.

We define on Wy the relation of partial order < such asa < f <= f—a € WI = {x1i1 + x2is + x3i3
+aqiq| v >0, k=1,2,3,4} . If o < B but o # 3, we denote o < . Let us denote by A, the set
of all bihyperbolic numbers which are not W4-comparable with = € Wy.

Definition 2. The W,-valued modulus of a bihyperbolic number o = ryi; + r9i9 + r3i3 + 7404 iS
said to be |a|W4 = |ryiy + roig + 1303 + 1404 W, = (71| i1 + |2l ie + |3l is + |ralia € WZ, where |r1],
Ira|, |3], |r4| are ordinary modules of real numbers.

Definition 3. Let (2,Y) be a measurable space. The function Py, : ¥ — Wy is called a Wy-
valued probability (or bihyperbolic probability) on the o-algebra of events X, if the following con-
ditions hold: 1) Py, (A) = 0,VA € 3; 2) Pw, (2) = (, where ( = 1,4y,142,13,i4; 3) For any
sequence {A,, n>1} C X of pairwise incompatible random events we have Py, (U,2, 4An) =
>, Pay (Ay).

The triplet (£2, X, Py,) is called a Wy4-probability space.

Each Wy-valued probability measure can be written in the form Py, (4) = P; (A) i1+ Py (A)is+
Py (A)iz+ Py (A)iyg, where P (A), Po(A), P3(A), Py (A) are probabilities.

The topology induced by the bihyperbolic norm generates the Borel o-algebra By, in Wy.

Definition 4. Let (2, X, Py,) be a Wy-probability space. A function X, (w) : 2 — W, such as
X@i (A) € ¥ for each open set A in Wy is called a Wy-valued random variable.

Each Wy-valued random variable Xyy, (w) can be written in the following form Xy, (w) =
Xy (w)ir + Xo (w)ig + X3 (w)is + Xy (w)ig, where X7 (w), X2 (w), X3 (w), X4 (w) are R-random
variables on {2.

Theorem 5. The Wy-valued function X, (w) on a measurable space (£2,X) is a Wy-valued random

variable if and only if {w € 2| Xw, (w) <z or Xw, (w) € Az} € X for all x € Wy.
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Theorem 6. Let Xy, (w) be a Wy-valued random variable on (2, X, Py,). ForVYax € Wy the follow-
ing conditions are equivalent: {w € 2|Xw,(w) Kz} € X5 {w € 2| Xw, (w) =z or Xy, (w) € Az} €
Y {w € 2| Xw,(w) =z or Xw,(w) € Az} € X5 {we 2| Xw,(w) <z} e X,

The algebra of quaternions is a structure of the form H = {ag + a1 + a2j + ask, a; € R, i =0,1,2,3},
where i? = 2=k =—1, ij = —ji=k, jk=—kj=1, ki=—ik=j.

Definition 7. Let 9t be a o-algebra of subsets of a non-empty set X. A quaternionic measure w
on a measurable space (X, 9) is a quaternion-valued function on 9t such that for any collection of
sets {A,,,n € N} C I that A, N A, = 0 whenever n # m we have w (U2, An) =2 2 w(A4,).

Definition 8. The function of the sets var [w] (A) :=sup > oo | |w (Ay)] is defined on the 91, where

n=1
the supremum is taken for all partitions of A, we call the complete variation w.

It is clear that |w (A)| < var [w] (A).

Theorem 9. The total variation var [w| of a quaternionic measure w on a measurable space (X, 9N)
is a positive measure on (X, ).

Theorem 10. If w is a quaternionic measure on a measurable space (X,9N), then var [w] (X) <oc.

Definition 11. Let u be a positive measure and w be a quaternionic measure on a measurable space
(X, 91) . We say that w is absolutely continuous with respect to p if g (A) = 0 implies w(A4) =0
for A € M. We write w < p.

Definition 12. Given a quaternionic measure w on a measurable space (X, 9), assume that there
is a set F' € M such that w(A) =w (AN F) for every A € M, we say that w is concentrated on F.
This is equivalent to say that w(A) = 0 whenever AN F = 0.

Let w1, ws be quaternionic measures on 9t and suppose there exist a pair of disjoint sets F,G
such that w; is concentrated on F and ws is concentrated on G. Then we say that w; and wy are
mutually singular, and write wy Lws.

Theorem 13. Let A\ be a signed real o-finite measure on a measurable space (X, M) and let w be a
quaternionic measure on (X,9M). Then there exists a unique pair of quaternionic measures w, and
ws such that w = w, +ws, wg K A\, wslA. The pair wg, ws is called the Lebesgue decomposition of w
w.r.t. X, where w, is the absolutely continuous part and ws is the singular part of the decomposition.

Theorem 14. (Radon-Nikodym). Let p be a positive o-finite measure on a measurable space
(X, M), let w be a quaternionic measure on (X,9M) and let w, be absolutely continuous part of
the Lebesgue decomposition of w w.r.t. . Then there is a measurable quaternionic function h (z)
on X such that for every set A€ M wq(A) = [, h(z)dp, where h(x) is uniquely defined up to a
u-null set.
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The invariants of planar 3-webs with respect to group of symplectic
diffeomorphisms, for the case of the conformal group

Konovenko N.
(ONAFT, Odesa, Ukraine)
E-mail: ngkonovenko@gmail.com

The classical web geometry (|1],[2],[4]) studies invariants of foliation families with respect to
pseudogroup of diffeomorphisms. Thus for the case of planar 3-webs the basic semi invariant is
the Blaschke curvature ([3]). It is also curvature of the Chern connection ([4]) that are naturally
associated with a planar 3-web. Remark that we have in addition to the diffeomorphism group two
infinite dimensional groups: symplectic and conformal groups.

We investigate invariants of planar 3-webs with respect to group of symplectic diffeomorphisms,
for the case of the conformal group see ([5]). We found the basic symplectic invariants of planar
3-webs that allow us to solve the symplectic equivalence problem for planar 3-webs in general posi-
tion. The Lie-Tresse theorem ([2]) gives the complete description of the field of rational symplectic
differential invariants of planar 3-webs. We also give normal forms for homogeneous 3-webs, i.e.
3-webs having constant basic invariants.
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Topology of spaces of smooth functions and gradient-like flows with
prescribed singularities on surfaces

Elena Kudryavtseva
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Let M be a smooth orientable connected closed two-dimensional surface, and fy € F(M) a
function all whose critical points have types A;, D;, Ej. Consider the set F = F(fo) of all functions
f € C>=(M) having the same types of local singularities as fy. Denote by DP°(M) the component
of unity in the group D(M) = Diff " (M) of orientation-preserving diffeomorphisms. The group
D(R) x D(M) acts on the space F by “left-right changes of coordinates”.

We want to describe the topology of the space F, equipped with the C'°°-topology, and its
decomposition into D°(R) x D°(M)- and D°(M)-orbits. This problem was solved by the author in
the cases when either fy is a Morse function and x(M) < 0 [2, 3], or all critical points of fp have
A, types, i1 € N [4]. Topology of the D°(M)-orbits was studied by S.I. Maksymenko [5] (allowing
some other types of degenerate singularities) and by the author (2, 3, 4] (for A,-singularities).

For any function f € F, consider the set Cy := {P € M | df(P) = 0} of its critical points. These
critical points form five classes of topological equivalence (somo classes may be empty):

C}mn _ U A;_z +1 max _ U AZz 1 saddle A U U AQ_z 771 21+1(f))UE777(f),
i>1 i>1 n==£ i>2
ey = U a@ulUDLNVES(HUEs (f)LE(HUES(f), =] Dy(f
i>1n=+ 3>2 j22

i.e. the critial points of local minima, local maxima, saddle points, quasi- and multy-saddle points,
respectively. Here Ai’i( ), Di( f) and Ei( f) denote the corresponding subsets of critical points
of A— D — F types. In the set Cem’ g — C?“" U Cm‘”’ of local extremum points, consider the subset
Cem* of degenerate (non-Morse) Crltlcal points.

Denote s :=max{0, x(M) + 1}.

Theorem 1. For any function fo € C°°(M), whose all critical points have A — D — E types,
the space F = F(fy) has the homotopy type of a manifold B = B(fo) having dimension dimB =
25 + |C;gm’ + |Ce$t'* . Moreover:

(a) There exists a bur]ectwe (submersz'on k:F — B and a stratification (respectively, a fibration
of codimension |Cy,|) on B such that every D(R) x D°(M)-orbit (resp., D°(M)-orbit) in F
is the k-preimage of a stratum (resp., a fiber) in B.

(b) The map & provides a homotopy equivalence between any D°(M)-invariant subset I C F and
its image x(I) C B. In particular, it provides homotopy equivalences between F and B, and
between every D°(R) x D°(M)-orbit (resp., D°(M)-orbit) from F and the corresponding
stratum (resp., fiber) in B.

In particular, mp(F) = m(B), Hp(F) = Hi(B). Thus Hi(F) =0 for all k > dimB.

Our proof of Theorem 1 uses a result (obtained in collaboration with Alexandra Orevkova) about
a “uniform” reduction of a smooth function to a normal form near its critical points.

Suppose 2 € A"(M) is a volume form on a n-manifold M = M™. Let P C M be a finite subset.
For any vector field £ on M’ := M \ P, we assign the (n — 1)-form 3 = iQ € A" }(M’). Clearly,
this assignement is one-to-one. Furthermore, the flow of the vector field £ is volume-preserving if
and only 3 is a closed form. Indeed: the Lie derivative L¢Q = (igd + dig)Q2 = digQ = df, so the
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Lie derivative vanishes if and only if d3 = 0. By abusing language, we will call the (n — 1)-form 3
a flow.

Suppose now that n = dim M = 2. A closed 1-form 8 on M’ = M\ P will be called a gradient-like
flow on M if there exists a Morse function f € C°°(M), called an energy function of 3, such that

(i) the set P coincides with the set of local extremum points of f,
(ii) the 3-form df A B[a\c ; has no zeros and defines a positive orientation on M,
(iii) in a neighbourhood of every point P € Cy, there exist local coordinates x,y such that either
B =dy), f=f(P)+a?—y*and P € Z =Cp\P, or = (ady — yda)/(z* + y?),
f=f(P)+(z*+y?*) and P € P.
Geometrically, the set Pg := P consists of sourses and sinks of the flow 8 and coincides with the
set of local extremum points of the energy function f, while the set Z3 := Z = C; \ P consists of
saddle points of the flow 5 and coincides with the set of saddle critical points of f.

Denote by B(AM) the space of all gradient-like flows 3 on M (having arbitrary finite sets Z = Z3
and P = Pg of saddles, sourses and sinks depending on ). Endow this space with C'*°-topology.
For a gradient-like flow Sy € B(M), denote by B(fy) the set of all gradient-like flows 5 € B(M)
having the same local singularities as Sy (in particular, |Z3| = |Z3,| and |Pg| = [Pg,|).

We want to describe the topology of the space B(fy), equipped with the C*°-topology, and its
decomposition into D°(M )-orbits and into classes of (orbital) topological equivalence.

Theorem 2. For any gradient-like flow Sy on M, the space B(3y) has the homotopy type of the
manifold B = B(fy) from Theorem 3, where fo is an energy function of By. Moreover:

(a) There exists a surjective submersion X : B(fy) — B, a stratification and a (|Pg,| + |Z35,|)-
dimensional fibration on B such that every class of topological equivalence (resp., every
DO(M)-orbit) in B(Bo) is the A-preimage of the stratum (resp., the fibre) from B.

(b) The map X provides a homotopy equivalence between every D°(M)-invariant subset I C
B(Bo) and its image N(I) C B. In particular, it provides a homotopy equivalence between
B(Bo) and B, as well as between every class of topological equivalence (resp., every D°(M)-
orbit) in B(Po) and the corresponding stratum (resp., fibre) in B. All fibres and strata
in B (and, thus, all classes of topological equivalence and all D°(M)-orbits in B(By)) are
homotopy equivalent either to a point, or to T?, or to SO(3)/G or to S?, in dependence on
whether x(M) < 0, or x(M) =0, or x(M) -|2s,] >0, or |Z3,| = 0, respectively, where G
is a finite subgroup of SO(3).

In particuar, 7(B(Bo)) = 71(B), Hr(B(5o)) = Hx(B). Thus Hi(B(5p)) = 0 for all k > dimB.

We will illustrate our results on several examples.
This work was supported by the Russian Foundation for Basic Research (grant No. 19-01-00775-

a).
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Nonlocal problem with integral conditions for homogeneous system
of partial differential equations of second order

Grzegorz Kuduk
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E-mail: gkuduk@onet.eu

Let II(T) = {(t,z) € R? : t € [0,T],z € R}, T > 0. Let us denote E, g,a > 0,3 > 0., to the
space of functions ¢ € La(R), with the finite norm [1]

+o00
1
lolews = |5 [ 1O 1+ )= exp(2lehde

where ¢(€) is the Fourier transform of the function ¢(x). In the strip I1(7") we consider nonlocal-
integral problem

o 0 - "u(t,x) ‘
L (at, (933) u(t,x) = Z jat" 0wl 0, a; €C, (tx)ell(T), (1)
k k
22| -G  [rutama=a, k=02, 2
o |io Ot [1=p
0

T T
Jetveaa [ v = e 3)

0 Ty

where ay,as € C. Assuming that the real parts of roots of polynomial A" 4+ a1 A"~ ! + ... + a,
are nonzero and different, the correctioness of the problem (1) - (3) in the space of functions
C?([0,T), Ea ) is established.

Obtained results continue the research of the work [2].
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Realization of groups as fundamental groups of orbits of smooth
maps
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Let M be a connected compact oriented surface and P be a real line R or a circle S'. Note, that
the group D(M) of diffeomorphisms of M naturally acts on the space of smooth maps C*°(M, P)
by the rule (f,h) — f o h, where h € D(M), f € C*°(M, P). For f € C*°(M, P) denote by O(f)
the orbit of f under this action. Let M(M, P) be the set of isomorphism clasess of fundamental
groups w1 O(f) of orbits of Morse maps f: M — P.

S. Maksymenko [1, 2] and B. Feshchenko [3] introduced the sets of isomorphism classes B and
T of groups generated by direct products and certain wreath products. They have proved that
M(M, P) C B if M is different from a 2-sphere S? and a 2-torus 72, and M(T? R) C 7. We
proved that these inclusions are equalities.

Definition 1. Let B be a minimal class of groups satisfying the following conditions:

1) 1€ B;
2) if G1,G2 € B, then G x G2 € B;
3)if GeBin=>1,then G, Z € B.

Let also 7 be the set of isomorphism classes of groups consisting of groups of the form G i, Z2,
where G € B and n,m > 1.

Let also B be a subclass of B consisting of groups (A x B), Z, where A, B € B\ {1} and n > 1.
Note, that B c BC T.

Denote by F(M,P) the space of smooth maps f € C°(M,P) satisfying the following two
conditions:

(1) all critical points of f belong to the interior of M, and f takes constant values on each
connected component of the boundary of M;

(2) for each critical point z of f its germ at z is smoothly equivalent to some non-zero homogeneous
polynomial R? — R of degree > 2 without multiple factors.

The set of all Morse maps from M to P is denoted by Morse(M, P). For each map f € F(M, P)
we can define the (continuous) function e; from the set of connected components of the boundary
OM to {£1}, which takes the value —1 on the boundary component if f has a local minimum on
this component, and +1 if f has a local maximum on this component. Let £y; be the set of all
continuous functions e: OM — {£1}. For ¢ € £y we denote by F (M, P,e) (Morse(M, P, ¢)) subset
of F(M, P) (Morse(M, P)) of functions f, for which e; = €.
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Denote
Gx(M,P,e):={mO(f,X)| f e F(M,P,e)},
Mx (M, P,e) :={mO(f,X) | f € Morse(M, P,e)},
G¥ .= {mO(f) | f € F(T? R), the Kronrod-Reeb graph T; is a tree},
MY = {mO(f) | f € Morse(T? R),the Kronrod-Reeb graph I'; is a tree},
GO .= {mO(f) | f € ]-'(TQ,]R),the Kronrod-Reeb graph I'y has an unique cycle},
MO = {mO(f) | f € Morse(T% R), the Kronrod-Reeb graph I't has an unique cycle}.
Theorem 2. (1) Let M be a connected compact oriented surface distinct from 2-torus and 2-sphere,

and let e: OM — {£1} be an arbitrary map from Epr. Then
a) if M = S' x[0,1], and € is constant, i.e takes the same value on components of the boundary

OM, then Mani(M, P,e) = Gon (M, Pye) = B\ {1},
b) if M = S* x [0,1] and ¢ takes different values on the components of the boundary OM or
M # S' x [0,1], then Mgpr(M, P,e) = Gonr(M, P,e) = B.
(2) There are equalities MY = GY =T, M© = G° = BO.
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Modified quaternionic operator calculus and its application to
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Original ideas for the extension of classical elasticity theory to account microeffects of a continuum
go back to the work [1] of Cosserat brothers, where they introduced a new theory called the Cosserat
continuum. The introduced theory grabbed attention of many scientists. Among others, works of
Eringen [2], and Nowacki [3] significantly supported further development of the theory. Eringen
introduced micro-inertia in the theory, which has led to renaming of the theory to the micropolar
elasticity. From practical point of view, the micropolar theory models not only displacements of a
continuum, as in the classical theory of elasticity, but also its rotations.

In this talk we introduce representation formulae for the solution of spatial boundary value
problems of micropolar elasticity. The representation formulae are constructed in the framework
of quaternionic analysis, which is a natural extension of the classical complex analysis to higher
dimensions. The main toolbox for constructing representation formulae for boundary value problems
of mathematical physics in hypercomplex analysis is the co-called quaternionic operator calculus
[4, 5]. The essential ingredient is the T-operator (Teodorescu transform), which is a right inverse
to the generalised Cauchy-Riemann operator. Accomplishing the T-operator with the F-operator
(Cauchy-Bitsadze operator), the higher-dimensional generalisation of the classical Borel-Pompeiu
formula can be obtained.

In this talk, we consider the following boundary value problem:

Problem 1. Let Q C R3 be a bounded simply connected domain with a sufficiently smooth bound-
ary I' =TgUTI'y. A boundary value problem of the micropolar elasticity is formulated as follows

A+2u+K)VV-u—(u+k) VXV xu=—-krV X, (1)
(a+08+79)VV- -7V XV Xep—2kp=—kV Xu, (2)
with boundary conditions
{ u = g onlp . { twny = tmx on Iy, (3)
¢ = g2 only, mygng = Mmy on I,

where u is the displacement vector, ¢ is the vector of micropolar rotation, ¢;; is the stress tensor,
my is the couple stress tensor, p is the material density, j is a rotational inertia, A and p are the
Lamé parameters, x, o, 3,y are material parameters of micropolar theory, n; are components of the
unit outer normal vector, ¢y, are given surface forces, and my);, are given surface moments.

After that, a quaternionic formulation of the boundary value problem (1)-(3) is considered [6]:

Proposition 2. Considering the displacement field u € C%(Q) and micropolar rotations ¢ € C?(£2)
as pure quaternions, i.e. U = ujei + use€s + uzes, Y = pie1 + poes + wses, equations of micropolar
elasticity (1)-(2) can be written as follows

D My Du+ kVec Dy = 0,

(D_i\/g) My (D—Fi\/%)cp—km\/ecDu 0, (4)
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where the operators My and My are defined by

Miw = —(A+2u+rK)wy — (u+ K)wie; — (u + K)waesy
—(p + r)wses,
Mow = —(a+ B+ y)wo —ywie; —ywaey —ywses,

for a quaternion-valued function w = wgy + wie; + woes + wses.

By reformulating the system as a system of operator equations, the questions of existence, reg-
ularity, stablity and uniqueness can be studied by using the classical and modified versions of
quaternionic operator calculus [4, 5]:

Theorem 3. The system of equations
{ D My Du + kVec D¢ = 0,

(D—z\/%) My (D+z'\/%)go+wecpu _— (%)

with Dirichlet boundary conditions

u = g only,
$ = g2 only,

18 equivalent to the system of operator equations

u = Frg +TM;'Fr(tr TM; ' Fr) ' Qrg:
—/iTMflTVec Do,

~ _ — - ~
¢ = Fafo+ToMy Fo (trTaMy ' Foo) Qa2
—k T My ' T_,Vec Du,

where 81 = g1 + ktr TMl_lT Vec Dy and g = g1 + ktr TaM'Q_lT_aVeC Du.

Further results related to the uniqueness of solution, as well as the estimate for a difference
between the micropolar model and the classical model of elasticity, will be presented in the talk.
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On non-Hausdorff manifolds of dimension 1
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Consider a T} topological space Y that is locally homeomorphic with [0,1). In other words, Y is
a one-dimensional non-Hausdorff but 77 manifold.

As usual, a point y € Y is internal, if it has an open neighborhood homeomorphic with (0,1).
Otherwise, y has an open neighborhood homeomorphic with [0,1) and is called a boundary point.
The set of all internal and boundary points will be denoted by IntY and 9Y respectively.

For a point z € Y define its Hausdorff closure, hcl(z), to be the intersection of closures of all
neighbourhoods of z, that is

hel(z) == ﬂ V.
V' is a neighbourhood of z
Evidently, z € hel(z). We say that z is special whenever hel(2) \ z # @. Denote by V the set of all
special points of Y.

Let H(Y) be the group of homeomorphisms of Y endowed with compact open topology, and
Hiq(Y) be the identity path component of H(Y), so it is a normal subgroup consisting of home-
omorphisms isotopic to the identity. The following statement gives a characterization of Higq(Y)
under assumption that the set V of special points of Y is locally finite.

Theorem 1. LetY be a second-countable Ty topological space being locally homeomorphic with [0, 1)
and such that the set V of its special points is locally finite. Let also k € H(Y'). Then k € Hiq(Y)
if and only if the following two conditions hold:

(1) k fizes each special point of Y;
(2) k preserves orientation of each connected component e of Y \ V.
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Symplectomorphisms preserving smooth functions on surfaces
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Let M be a compact connected surface and P is a connected one-dimensional manifold without
boundary, i.e. either the real line R or the circle S'. Denote by D(M) the group of all smooth (C*°)
diffeomorphisms of M. This group acts from the right on the space C°°(M, P) by the following
rule: if h € D(M) and f € C*°(M, P), then the result of the action of h on f is the composition
map foh: M — P. For f € C*(M, P) let ¥ be the set of its critical points, and

S(f)={heDM)| foh= [},
O(f) ={foh|heDM)}

be respectively the stabilizer and the orbit of f under that action. Endow these spaces with C'*°
topologies and denote by Diq(M) and Siq(f) the corresponding path components of ids in D(M)
and S(f), and by O¢(f) the path component of O(f) containing f. We will omit X from notation
whenever it is empty.

Notice that Siq(f) is a normal subgroup of S(f), and the quotient:

m0S(f) == S(f)/Sia(f)
is the group of path components of S(f). This group is an analogue of mapping class group for
f-preserving diffeomorphisms.

Let F(M, P) be a subset of C*°(M, P) consisting of maps satisfying the following two axioms:

(B) The map f takes a constant value at each connected component of M and has no critical
points in OM;

(L) For every critical point z of f, there are local coordinates in which f is a homogeneous
polynomial R? — R of degree > 2 without multiple factors.

Evidently, (M, P) contains all Morse maps.

For f € F(M, P) the homotopy types of Siq(f) and orbits were described by S. Maksymenko, and
the homotopy types of connected components of orbit O(f) by S. Maksymenko, E. Kudryavtseva
(for Morse maps and for smooth functions f : M — R with simple singularities which are not
homogeneous but quasi-homogeneous), B. Feshchenko, I. Kuznietsova, Yu. Soroka, A. Kravchenko.

Theorem 1. Let [ € F(M,P). Then the natural map p : S(f) — moS(f) has a section:
s mS(f) = S(f),

80 s 18 a homomorphism such that po s = id s, (s)-

Moreover, if M 1is orientable, then there exists a symplectic structure, i.e. a mnon-degenerate
differential 2-form w, on M, such that the image s(ﬂ'OS(f)) consists of symplectic diffeomorphisms
with respect to w.
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Second classical Zariski topology of multiplicational module
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Let R be a associative ring and M an multiplicative R-module. If N is a subset of an R-module
M we write N < M to indicate that N is a submodule of M.

Definition 1. Proper submodule P of the left module M is called prime submodule, if quotient
module M /P is prime left module, ie Ann(K/P) = Ann(M/P) for every nonzero submodule K/P
of module M/P.

This definition can be found in such papers: [1], [2]|, and there are a lot of interesting results
about such modules. Set of all prime submodules of module M is called prime spectrum of module
M and is denoted by Spec(M).

Definition 2. A non-zero submodule N of M is said to be second if for each a € R, the homomor-
phism N —% N is either surjective or zero [3]. More information about this class of modules can
be found in [4].

Let Spec®(M) be the set of all second submodules of M. For any submodule N of M, V**(N) is

defined to be the set of all second submodules of M contained in N. Of course, V**(0) is just the
empty set and V(M) is Spec®(M). It is easy to see that for any family of submodules N;(i € I)
of M, NicfV¥*(N;) = V*(NierN;). Thus if (sx(M) denotes the collection of all subsets V**(IV)
of Spec®(M), then (s*(M) contains the empty set and Spec®(M), and (sx(M) is closed under
arbitrary intersections. In general (s#(M) is not closed under finite unions.
Now let N be a submodule of M. We define W*(N) = Spec®(M) — V**(N) and put Q*(M) =
{W3(N) : N < M}. Let n®(M) be the topology on Spec®(M) by the sub-basis Q°(M). In fact
n®(M) is the collection U of all unions of finite intersections of elements of 2°(M) [6]. We call this
topology the second classical Zariski topology of M.

Theorem 3. Let R be a associative Noetherian ring and let M be a cotop multiplicational R-module
with finite length. Assume that the second classical Zariski topology of M and the Zariski topology
of M considered in |5] coincide. Then M is a comultiplication R-module.

Theorem 4. Let R be a associative Noetherian ring and let M be a co-multiplication R-module
with finite length. Then Spec®(M) is a spectral space (with the second classical Zariski topology).
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Incomplete spaces of idempotent measures
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The notion of idempotent measure in the idempotent mathematics (i.e., a part of mathematics
dealing with idempotent operations on reals) corresponds to that of probability measure in the
traditional mathematics [7]. The compact spaces of idempotent measures are intensively investigated
by numerous authors. We are going to present some results on topological and categorical properties
of the idempotent measures in the noncompact case.

One defines the set of idempotent measures on X as the set of functionals p: C'(X,[0,1]) — [0, 1]
satisfying: 1) p preserves the constants; 2) u(t¢) = tu(d); 3) w(op V) = u(d) Vv u().

The set I(X) of idempotent measures is endowed with the weak* topology.

Note that exists a natural (by X) map &x: I2(X) — I(X) defined as follows. Given ¢ €
C(X,]0,1]), let ¢: I(X) — [0,1] be the function defined by ¢(u) = (), pp € I(X). Then, for any

M e I2(X), ex(M)(6) € M(3).

It turns out that the definition of idempotent measure can be formulated in terms of special
subsets of X x [0,1]. Namely, we consider subsets A C X x [0,1] of the form: A is closed and
saturated; X x {0} C A; AN (X x {1}) #0.

To every such set A there corresponds a functional A : C'(X,[0,1]) — [0,1] (we thus keep the
same notation) defined by the formula: A(¢) = sup{to(z) | (z,t) € A}.

Let X be a Tychonov space (completely regular space). By X we denote the maximal compact-
ification (Stone-Cech compactification) of X. Consider the set I5(X) of all subsets A in X x [0;1]
such that :

1) Ais closed in X x [0,1];
2) A is saturated, i.e. V(z,t) € AVE . 0<t <t, (2,t) € A
3) X x{0} C 4;
)
)

4) the support of A, i.e., the set supp(A) = {x € X |3t > 0, (z,t) € A} is compact;
5) dr e X: (z,1) € A.

We denote by I,(X) the family of all sets A € Ig(X) such that supp(A) is a finite set. Now we
define map & : I2(X) — I,(X), where &

E(A) =1 (z,r)] T s,t €0,1], @ € [,(X) such that r = st, (z,s) € , (a,t) € A }.

Next, we consider the case of metric spaces. For given metric space (X, d), we endow X x [0, 1] by
the metric d, where d((x.t), (', ') = d(z,z')V |t —t'|. The space I,(X) is endowed with Hausdorff
metric induced by CZH We can consider I,(X), as a new metric space with Hausdorff metric dp.
Apply the same operation I, to (I,(X),d). We obtain a new space I,(1,(X)) with (dgp) metric.

Theorem 1. The map £x: (I3(X),dyn) — (I,(X),dy) is non-expanding.

This theorem allows us to extend the map &x over the completion I(X) of I,(X) (here we assume
that X is complete).
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Hyperspaces of convex sets related to idempotent mathematics
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The notion of hyperspace is one of the most important not only in topology but also in another
parts of mathematics. This notion allows us to consider multivalued maps as single valued with the
values being points of a hyperspace.

The hyperspace of compact convex sets in compact convex subsets of Euclidean spaces was first
considered by Nadler, Quinn, and Stavrokas [4]. They proved, in particular, that the hyperspace of
the Euclidean space R", n > 2, is homeomorphic to the punctured Hilbert cube.

We denote by x@y the coordinatewise maximum of z,y € R". Given t € Rand (y1,...,yn) € R”,
let t ® (y1,-..,9yn) = (min{t,y1},...,min{t,y,}). A subset A C R" is said to be max-min convex
if, for any z,y € A and any t € R, we have t &t @ y € A. It is proved in [3] that the hyperspace of
compact max-min convex sets in the Euclidean space R™, n > 2, is homeomorphic to the punctured
Hilbert cube.

Following the style of idempotent mathematics we define, for any ¢ € R and any = = (x1,...,2,) €
R" tOx = (t+x1,...,t+x,). Asubset A C R" is said to be max-plus convex (see, e.g., [1]) if, for
any z,y € A and any ¢t € (—00,0], we have t @t ©®y € A. It is proved in [3] that the hyperspace of
compact max-min convex sets in the Euclidean space R", n > 2, is homeomorphic to the punctured
Hilbert cube.

Recall that the Fell topology on the hyperspace of closed subsets of a Hausdorff topological space
has as a subbase all sets of the form {A | ANV # 0}, where V is an open subset of X, and also
all sets of the form {A | A C W}, where W has compact complement. We denote by MpccpR"™
and MmccpR™ the hyperspaces of the max-plus convex and max-min convex nonempty closed (not
necessarily bounded) subsets of R™ endowed with Fell topology. See [5] for description of topology
of the hyperspaces of compact convex subsets of R” endowed with Fell topology.

Every non-empty closed subset A of a metric space (X, d) can be identified with the distance
function z — d(x, A). The topology of convergence on bounded sets induces the Attouch-Wetts
topology on the hyperspace of non-empty closed sets. We denote by Mpcc 41y R™ and Mmecc 4y R™
the hyperspaces of the max-plus convex and max-min convex nonempty closed (not necessarily
bounded) subsets of R” endowed with Attouch-Wetts topology. Some results on ANR-properties of
the hyperspaces in the Attouch-Wetts topology can be found in [6].

The aim of the talk is to discuss properties of the hyperspaces MpccpR™ and MmccrpR"™, Mpcc 45 R™,
and Mmecc a4 R"™.
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Volumes of knots and links in spaces of constant curvature
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We investigate the existence of hyperbolic, spherical or Euclidean structure on cone-manifolds
whose underlying space is the three-dimensional sphere and singular set is a given knot or link. For
two-bridge knots with not more than seven crossings we present trigonometrical identities involving
the lengths of singular geodesics and cone angles of such cone-manifolds. Then these identities are
used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled
in the hyperbolic, spherical and Euclidean geometries.
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Twistor spaces on foliated manifolds
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Let M?" be an even-dimensional Riemannian manifold, the twistor space Z (M) is the parametriz-
ing space for compatible almost complex structures on M. It is a bundle over M, with fiber
SO(2n)/U(n) and is equipped with two almost complex structures J*, where J* can be integrable
but J~ is never integrable, however, it still is important as will be discussed. Moreover, in the case
where J7T is integrable, it is shown in [1] that M has particular properties, especially when n = 2,
which is an interesting case in physics, since the holomorphic structure of the twistor space corre-
spond to a conformal structure of M. This correspondence is called the Penrose correspondence.

This talk is based on a joint work with R. A. Wolak [2] , in which, the theory of twistors on
foliated manifolds is developed. We construct the twistor space of the normal bundle of a foliation.
It is demonstrated that the classical constructions of the twistor theory lead to foliated objects
and permit to formulate and prove foliated versions of some well-known results on holomorphic
mappings. Since any orbifold can be understood as the leaf space of a suitably defined Riemannian
foliation we obtain orbifold versions of the classical results as a simple consequence of the results
on foliated mappings.
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Two problems in nonholonomic geometry (in quest of a co-worker)
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Particular distributions living on the stages of the Goursat Monster Tower (GMT) have been the
object of studies dating as far back as 1889, then 1896, 1914, 1922, 1978, 1982, 1999, 2001 ... (the
very notion GMT is, of course, not that old). From the GMT stage No 8 onwards there exist local
numerical invariants (moduli) in the local classification of Goursat distributions (cf. Travaux en
cours 62, Paris (2000), Remarks 3 and 4 on p.110 and 111).

A.A. Agrachev asked in the year 2000 if the moduli of Goursat structures descend to the level
of the nilpotent approximations (NA) simpler objects retaining some basic properties of initial
completely nonholonomic distributions. (The NA’s are of central importance in the geometric
control theory, motion planning problems, etc.) The author gave two very partial answers to
Agrachev’s question (in 2006 and 2014, both in the negative). Otherwise, this problem remains
vastly open.

The talk’s proper aim is to survey another problem concerning the GMT. The one which asks
for all the strongly nilpotent points (or, better: strata) in the stages of the GMT. (In the way of
explanation, all points in the GMT are weakly nilpotent in the control theory sense, while only a
tiny portion of them is strongly nilpotent.) The conjecture, still unsettled, says that, within the
GMT, ‘strongly nilpotent’ is but a synonym of ‘tangential’, while all the tangential points are known
[already since the mid 2000s| to be strongly nilpotent. So the brunt of this problem boils down to
the computation of the NA’s at non-tangential points. That little or ... that much.

To just give a non-trivial example, here is a non-tangential stratum RRVRV lying in the 5th stage
of the GMT. The associated weights, central in the nonholonomic geometry and analysis, are 1, 1, 2,
3,5, 7,11. The NA(RRVRV) computed along the lines of the by-now-classical Bellaiche algorithm
is — in certain adapted coordinates zi, za,..., 27 — spanned by the two vector fields 9/0z; and

1
)0z + 2100z + 21200024 + 21210/ D25 + 2125240/ D g + (zmzﬁ + §z1z33Z4)a/aZ7.

Yet, in this line of research super-adapted coordinates are sought, in which a visualisation of a given
NA uses as few active variables as possible. In the chosen example such super-coordinates can be
derived from the previous ones. The eventual visualisation of the NA(RRVRV) appears to be

(8/821 , 0/0z9 + 210/ 0z + 21220/ 024 + 2122230 /025 + 21222328/826 + 21222348/827)

(it is not possible to visualise NA(RRVRV) in only two active adapted variables; three as in the
expansion above is the minimal number). Only having NA(RRVRV) in this utmostly compactified
form, it becomes possible to show that the stratum RRVRV is indeed not strongly nilpotent.

The outlined problem is, therefore, pretty much computational. A skilful computer-oriented
person is sought in earnest, willing to actively take part in dealing with this challenging problem.
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The local 7-density of a linearly ordered spaces
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A set A C X is said to be dense (in X), if [A] = X. The density of the space X is defined as
the smallest cardinal |A|, where A is a dense subset of X [1]. This cardinal is denoted by d (X). If
d(X) =71, 7 >Ny, the space X is said to be 7—dense. If d (X) < Ny, then X is said to be separable.

A topological space X is called locally 7—dense at the point x € X, if 7 is the smallest cardinal
number, such that x has a neighbourhood of density 7 in X [2]. Local density at z is denoted by
ld (x). Local density of the space X is defined as follows:

ld(X)=sup{ld(z): =€ X}

It is clear that local density of a topological space cannot exceed the density of said space, i.e.
ld(X) <d(X).

We say that the weak density of the topological space is 7 > Ny, if 7 is the smallest cardinal
number such that there exists a w-base coinciding with 7 of centered systems of open sets, i.e. there
is a m-base B = U{B, : a« € A} where B, is a centered system of open sets for each o € A, |A| =7
[3]. Weak density of topological space X is denoted by wd(X).

Topological space X is said local weak 7-dense at a point x, if 7 is the smallest cardinal number
such that = has a neighborhood of weak density 7 in X [4]. Local weak density at a point x is
denoted by lwd(z). The local weak density of a topological space X is defined as the supremum of
all numbers lwd(z) for z € X :

lwd(X) = sup{lwd(x) : x € X}.

It is clear that local weak density of a topological space cannot exceed the weak density of said
space, i.e. lwd (X) < wd (X).

Let X be a set, and < be some relation on X. We say that < is a linear order on X if the relation
< satisfies the following properties:

1) If x <yandy< z, then z < z;

2) If © < y then the relation y <  does not hold;

3) If 2 # y then either < y or y < x holds.

A set X together with some linear order defined on it is called a linearly ordered set [1].

Theorem 1. Suppose that a space X satisfies at least one of the following conditions:
1) X is a linearly ordered topological space with the interval topology,
2) X is pseudometric space.
Then X is locally T—dense if and only if it is locally weak T—dense.
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Entropy and phase transitions in Calabi-Yau space
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The evolution of the concept of entropy from the mathematical definition of the theory of proba-
bility to the physical definition of entropy in various systems is considered. Statistical interpretation
of entropy for a macrostate is characterized by IN; microstates

N N
" NyN,... ILN;

The equilibrium state corresponds to the maximum probability, which is proportional to the maxi-
mum entropy, and is displayed by the Boltzmann-Planck law

S=Fk-InW.

w

For large N using the Stirling formula
InN!'= NinN — N

and taking into account the degeneracy of the energy states, z;, we have the following formula for
the probability of a system of particles

N .
W= ——F"II;z".
nmny...nNy
Within the framework of the AdS/CEFT correspondence, a model for determining the entropy of
black holes through the number of microstates is considered. It is known that the entropy of a black

hole is determined by the Bekenstein-Hawking formula,

5=
4G

where A and G are the surface areas of the black hole and the gravitational constant, respectively.
In the framework of superstring and D-brane theory, the concept of entropy has changed due to
the presence of the extra-dimensional Calabi-Yau space, which is folded at each point of the usual
Minkowski space
Adtp
4Gyp’

where p are spatial directions of the space RP x S9!, with d — the number of space dimensions
transverse to the p-directions. According to Strominger [1], a black hole can be represented as
a submanifold of such a Calabi-Yau like a pea in a shell. Depending on the dimension of space,
the two-dimensional world surface of the string completely surrounds the two-dimensional sphere,
the 3-brane surrounds the three-dimensional sphere, etc. Since the black hole tends to deflate and
swell, according to the ideology of flop transformations, a rupture of the Calabi-Yau space occurs.
In this case, according to Strominger’s calculations, the black hole undergoes a phase transition and
transforms into a pointlike particle like a photon,

1/(d-3)
Sarray - ﬁ
Sstring TH .

So the array dominates for small horizon radii, and the black string dominates for large horizon
radii.

S:
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String theory spacetimes with conserved quantum numbers can be black holes, but more com-
monly they are black p-branes. According to papers |2, 3| black hole entropy

G Qqorfy?
BH = "o
can be described in terms of D-brane theory,
Qs_pro P
Spg = S b H coshf3,

4G10-p
where coshf depends on the number of branes. For particular cases, when the number of branes that

cover a black hole is determined, we can calculate d = 4 entropy in usual four-dimensional space-
time. D-brane method for a microscopic accounting for Spg of BPS black holes with macroscopic

entropy leads to the formula
Spu = 2m\/ N2 NgN5Np,,

(N; - the numbers of i-branes) which is in agreement with black hole entropy formula, [2].
Using BPS - states of D-branes represented by vector bundles of the type

Spin(k) — Spin(k + 1)

) (1)

Sk
it can be shown that for £k = 6, Spin(6) group is isomorphic to the SU(4) group. Since the group
describing black holes is SU(2,2[|4) ~ SU(2,2) x SU(4) (SU(2,2) describes the external degrees
of freedom, and SU(4) - the internal ones), the greatest interest is of group SU(4). Then we can
work with Spin vector bundles, which present D-branes with the phase transitions between them
classified with Grothendieck K-group in the framework of the Clifford algebra formalism. As a
result, we obtain a chain of phase transitions of a black hole represented by transitions between
topological invariants of vector bundles described by K-groups

K(S%) — K(S") —» K(S?) - K(8°) =2,
which signal about an equidistant set of energy levels of a point-like particle into which the black
hole has passed during the phase transition.
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Reducing singularities of smooth functions to normal forms

Orevkova Alexandra
(Moscow State University, Moscow, Russia)
E-mail: s15b3_orevkova@179.ru

The talk is devoted to the “uniform” reduction of C*° smooth functions on 2-dimensional manifolds
to a canonical form at the singular points of these functions.

Definition 1. A smooth function f = f(u1,u2) has a singularity Eg at its critical point P € R? if

(i) the first and second differentials df (P) = 0, d2f(P) = 0, and the third differential d® f(P) #
0 and is a perfect cube;

(ii) there exists a vector v € Ker d® f(P) such that v* f # 0 (by v*f we mean the fourth derivative
of f along the tangent vector v at P).

Theorem 2 (Reducing Fg to normal form). Let the function f(uy,us) have a singularity Eg at the
critical point P. Then, in some neighborhood of P, there is a local coordinate system in which the
point P is the origin, and the function has the normal form

f=fP)+z x5

Moreover, this coordinate system can be chosen in such a way that the coordinate change (uy,us) —
(Z,7) can be expressed in terms of the original function and its partial derivatives of order < 7 using
algebraic operations and the operation of taking a proper integral.

Remark 3. In [1], the first part of Theorem 2, i.e. the existence of a coordinate change, was proved
using Tougeron’s theorem [2]; in view of this, obtaining a formula for the corresponding coordinate
change requires solving the Cauchy problem for a system of ordinary differential equations. We
construct our coordinate change explicitly, without using Tougeron’s theorem.

Our proof of Theorem 2 consists of three steps. At first, we consider a smooth function in two
variables of the form f(u1,us) = u3+uj+R(u1, us), where the Taylor series of the function R(uq,us)
at the origin has zero coefficients at all monomials of the form u¥ub, 4k 4 31 < 12. At second, by
the sequence (ui,us) — (x,y) of substitutions described in [1], we reduce the function f to such a
form that the origin leaves fixed and f(k+l)(0 0) =0, where 0 < k < 3,0 <[ < 4. At third, using

the Taylor series expansion of the functlon with an integral remainder, we reduce the function to
the required normal form by the coordinate change

¢:Ry, =R,  with Z=a{g(z,y), §=yvh(zy),

(k 4
where g(z,y) == S_ 0 k,f )(x 0)/2* and h(z,y) == & fo ( )(x sy)(1 — s)3 ds.
Our next goal is to descrlbe a neighborhood in Wthh the above coordinate change ¢ exists and
is regular. To simplify our computations, we will assume that the following is true:

Assumption 4. fﬁ)(o, 0) = 24, f3(0,0) = 6.

Theorem 5 (Estimating the radius of a neighborhood where the coordinate change is regular). Un-

der the hypotheses of Theorem 2 and Assumption 4, let Uy = {(z,y) | max(|z|,|y|) < Ro} be a neigh-

borhood of the origin such that Cop = supy, |f§;;g (z, y)| < M for (e, B) € {(0,5),(1,4),(3,1),(3,2),(3,3),(4,0),
(4,1),(4,2),(4,3)}, where Ry > 0, M > 0. Let’s consider the neighborhood U = {(z,y) | max(|z|, |y]) <

R}, where the positive constant R is defined by the formula: R = min{ Ry, Miﬁ} Let also ¢ be the

coordinate change from the proof of Theorem 2 that reduces f to the normal form Eg. Then:
104



(a) the functions h(z,y) and g(z,y) do not change sign in U, that is, the change @|y is well
defined and is smooth;

(b) at every point @ € U, one has ||¢/(x) — I|| < C < 1, where C = 2, i.c., the coordinate
change ¢|u is close to the identity;

(c) the coordinate change ¢|y is injective and regular, i.e., it is an embedding and det |¢'(x)| # 0
at every point * € U, moreover the image of this embedding contains the disk of radius
(1 — C)R centred at the origin.

Remark 6. Our coordinate change ¢|y from Theorem 2 and Theorem 5 provides a “uniform”
reduction of the function f at a singular point of type Eg to the canonical form & + 7% in the sense
that the neighbourhood radius and the coordinate change we constructed in this neighbourhood (as
well as all partial derivatives of the coordinate change) continuously depend on the function f and
its partial derivatives. A uniform reduction of smooth functions near critical points to a canonical
form was known earlier for the case of smoothly stable singularities [3]. A uniform reduction of
smooth functions to a canonical form by C*-smooth changes (for finite k& < 00) is known for finite
type singularities [3] and for topologically stable singularities [5].

To prove Theorem 5, we apply the following lemma to the coordinate transformation ¢ from the
proof of Theorem 2. We estimate the norm of the matrix in terms of its clements: [|A| < (/> a?

R
A= {aij}?,j:r

Lemma 7. Let ¢ : U — R"™ be a smooth mapping, where U is a convex open subset of R™. Let
the differential of ¢ have the form ¢'(x) = I + A(x), where I is the unit matriz of dimension n,
Al < C, 0 < C < 1. Then ¢ is injective and det |¢/(x)| # 0 at every point x € U, i.e., ¢ is a
diffeomorphism to its image ¢(U). Moreover, (¢'(x),x) = (1 — O)|x|? for every point x € U.

From the last assertion of Lemma 7 and |6, Corollary 8.3, Step 1], we conclude that ¢(U) contains
the disk of radius (1 — C')R centred at the origin. This completes our proof of Theorem 5.
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On m-convexity and m-semiconvexity of sets in Euclidean spaces

Tetiana Osipchuk
(Institute of Mathematics NAS of Ukraine, Kyiv)
E-mail: osipchuk@imath.kiev.ua

The topological and geometric properties of classes of generally convex sets in multidimensional
real Euclidean space R™, n > 2, known as m-convex, weakly m-convex, m-semiconvex, and weakly
m-semiconvex, m = 1,2,...,n —1, are studied in [1]-[6]. A set of the space R" is called m-convez
(m-semiconvez) if for any point of the complement of the set to the whole space there is an
m-~dimensional plane (half-plane) passing through this point and not intersecting the set. An open
set of the space is called weakly m-convexr (weakly m-semiconvex), if for any point of the
boundary of the set there exists an m-dimensional plane (half-plane) passing through this point and
not intersecting the given set. A closed set of the space is called weakly m-convexr (weakly m-
semiconvez) if it is approximated from the outside by a family of open weakly m-convex (weakly
m-semiconvex) sets. These notions were proposed by Professor Yuri Zelinskii [1], [2].

Let us denote the classes of m-convex and weakly m-convex sets in R, n > 2, by C2 and WC},,
respectively. There are weakly m-convex sets in R™, n > 2, 1 < m < n, which are not m-convex, i.
e., the class WCE \ Ch, is not empty for any m = 1,2,...,n — 1. The example of an open set of
the class WC?2 \ C2 is constructed in [4]. The examples of open and closed sets of WC2_; \ C2_,
and examples of open sets of WCE, \ Ch,, n >3, 1 <m < n — 1, are constructed in [6]. Moreover,
any open or compact set of WCL_; \ Ch_ is necessarily disconnected, but there exist domains of
WCL\Ch,n>3,1<m<n—1, which show the following three theorems.

Theorem 1. ([4]) An open set of the class WCL_; \ Ch_; consists of at least three connected
components.

Theorem 2. ([6]) A compact set of the class WCR_, \ CR_, consists of at least three connected
components.

Theorem 3. ([6]) There exist domains of the class WCh \ Ch, n>3,1<m<n—1.

m’

It is also known the topological classification of open (weakly) (n — 1)-convex sets in the space
R™ with smooth boundary [1]. [4]. Each such a set is convex, or consists of no more than two
unbounded connected components, or is given by the Cartesian product E' x R"~!, where E' is a
subset of R.

Let us denote the classes of m-semiconvex and weakly m-semiconvex sets in R™, n > 2, by Sp,
and WS2 | respectively. In [3] it is constructed an example of an open set of the class WS2\ 2. Tt
is also conjectured that any open set of WS2\ S2 consists of at least three components. The latter
statement is proved in [4]. There can be also constructed sets of WSH_; \ S2_; and the example
of domains of WS, \ Sh, n > 3,1 < m < n — 1, similar to the domains of WC}, \ C4,. The
following theorem shows the impossibility of the topological classification of weakly 1-semiconvex
sets with smooth boundary similar to the topological classification of open (n—1)-convex and weakly
(n — 1)-convex sets with smooth boundary.

Theorem 4. (|5|) An open, bounded set of the class WS2\ S2 with smooth boundary consists of at
least four connected components.
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On representations of ¢;;-commuting isometries
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C*-algebras generated by isometries have been studied by various authors. Among the most
relevant examples we mention Toeplitz algebras, Cuntz algebras, and their deformations. These
examples belong to the class of x-algebras with Wick ordering [1].

Recall that the Cuntz-Toeplitz algebra O is a unital C*-algebra generated by elements sj, j =
1,...,d, which satisfy relations

sjsk:5jkf7 j7k’:1,...,d.

In this paper, we consider representations of C*-algebra Wy generated by elements s;, j = 1,...,d,

satisfying relations
sisi=1, sis;=qis;isi,  lagl <1 qij = @i, I1<i#j<d (1)

One can see that for g;; = 0, i # j, this algebra is 0. It was conjectured in [2] that, in particular,
for |g;;| < 1,4 # j, the corresponding C*-algebra is isomorphic to (’)2, however, the proof is known
for the cases d = 2 [3] or |g;;| < v2 — 1 [2] only. While the representations of the Cuntz-Toeplitz
algebras were studied in detail in a number of papers, for other Wick algebras, including Wy, only
the Fock representation [1] is known. Therefore, constructing representations of “deformed” relations
(1) can give a hint for a construction of the isomorphism between W, and 09 in a general case.

We start with some notations. Let oo = (au,..., ) € {1,...,d}™ be a finite multiindex of
length m, |a| = m, let A, = {1,...,d}™ be the set of all finite multiindices of length m, Ay = 0,
and let AY = U%_(A,, be the set of all finite multiindices of arbitrary length. Also, we will use the
set A = {1,...,d}> of all infinite multiindices. For each finite multiindex o = (a1, ..., qy,) € A°
we use notation sq = Sq - - - Sa,,- For a finite multiindex we use standard mappings:

A 2a=(a1,...,an) —ola) = (ag,...,an) € Ap—1,
A da=(o,...,om) = oj(a) = (j,00,...,0m) € Apg1, j=1,...,d.

The same mappings can be obviously defined for an infinite multiindex a € A.
If o € A? does not contain j, then (1) implies

5;504 = q(.]? a)sas;v q(]v a) = djay - - - Qjam-
If o contains j, then « can be represented as a = (o/ja’’), where o/ does not contain j, then
S;Sa = Q(j, O/)So/soa” = Q(jv a)sa\j

(here and below, we denote by « \ j = (¢/&”) multiindex obtained from a by removing the first
occurrence of 7, and set ¢(j,a) = ¢(j, ') for convenience).
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For infinite multiindices a, 8 € A, we define q(«, 8) as follows. If there exists v € A, o/, 8" € A,
m > 0, for which
a=(av), B=(8,v), o and ' coincide up to a permutation,

then we define q(«, 8) = q(¢/, 8), and zero otherwise. It is a straightforward fact that g(«, ) is
well-defined.

We proceed with introducing an appropriate Hilbert space. We say that infinite multiindices
a, B € A are equivalent, denoted by 8 ~ «, if they “have the same tails up to a shift”, i.e., there
exist numbers m, n, such that 0™ (a) = ¢™(f). Fix an infinite multiindex o and consider a family
of vectors (eg | f ~ «). For these vectors, define

(65767) = Q(577)7 (2)
in particular, (eg,eg) = 1.
Proposition 1. Form (2) is well-defined and positive.

For a fixed a € A, define a Hilbert space H, as the closed linear span of vectors (eg | § ~ «)
with respect to the introduced scalar product.

Theorem 2. 1. Operators in H,

0, £ does not contain j,
q(j, Bleg\j: otherwise,

form well-defined x-representation of the C*-algebra W,.

2. This representation is irreducible

3. Representations corresponding to multiindices o, o' are unitary equivalent iff the corresponding
Hilbert spaces coincide, i.e., o ~ o,

Ta(sj)es = €o;(8),  Talsj)es = {
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This paper introduces homotopic nerve complexes in a planar Whitehead CW space |6, §4-5] and
their Rotman free group presentations [4, §11,p.239]. A CW complex in a space K is a closure-finite
cell complex that is Hausdorff (union of disjoint cells), satifying the containment property (closure of
every cell complex is in K') and intersection property (common parts of cell complexes in K are also
in K). A complex K is locally finite, i.e., every point p € K is a member of some finite subcomplex
of K and every complex has a finite number of faces [5, §5.2,p.65]. A planar CW complex K is
a collection of 0-cells (vertexes), 1-cells (edges) and 2-cells (filled triangles). Collections of planar
cells attached to each other are sub-complexes in K.

Definition 1. 1-Cycle. A 1-cycle cycF in a CW space K is a collection of path-connected vertexes
on 1-cells (edges) attached to each other and with no end vertex.

The edges in a 1-cycle cell complex in a CW space are replaced by homotopic maps to obtain a
homotopic cycle.

Definition 2. Homotopic-Cycle. A homotopic cycle E (denoted by cycE) is defined to be
{hi}?_, a set of n paths in a space X, where hi(0) = h,(1) and the initial point of h;i; is the
terminal point of h; for 2 <i <n—1,ie., h;j(0) = h;_;)(1). Each path is a mapping h : [0,1] — X
and h;(0) is a vertex in a finite set of cycle vertices. A reverse path h;(t) := h;(t — 1) gives us an
inverse map, so that

hi(0) = hi(1) = hi(0) — hi(1 — 1) = h;(0) — ;(0) = 0.
In cycle cycE, every vertex v; is reachable by k maps from a distinguished vertex h;(0) = v, i.e.,
kvg :=h1(0) + - + hy+1(0)
t.e., k maps to reach hy.1(0) from hq(0)

2:h1—)"‘—>hk+1.

Here, + represents a move from one vertex to another one in the cycle, which translates to a
homotopic path between vertices.

Definition 3. Nerve Complex. A nerve complex NrvF in a space X is a collection of nonempty
cell complexes with nonvoid intersection.

Theorem 4. A pair of pair of 1-cycles with a common vertex in a CW space is a nerve complex.

Theorem 5. Every collection of homotopic cycles with a common vertex in a CW space is a ho-
motopic nerve compler.

Lemma 6. FEvery vertex in the triangulation of the vertices in a CW space is the nucleus of an
Alexandroff-Hopf nerve complex [1, §4.2.11, p. 161].

The research has been supported by the Natural Sciences & Engineering Research Council of Canada (NSERC)
discovery grant 185986 and Instituto Nazionale di Alta Matematica (INdAM) Francesco Severi, Gruppo Nazionale per
le Strutture Algebriche, Geometriche e Loro Applicazioni grant 9 920160 000362, n.prot U 2016/000036 and Scientific
and Technological Research Council of Turkey (TUBITAK) Scientific Human Resources Development (BIDEB) under
grant no: 2221-1059B211301223.
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Theorem 7. A CW space containing n triangulated vertezes contains n Alexandroff-Hopf nerve
complezes.

Remark 8. A finite group G is free, provided every element & € G is a linear combination of its
basis elements (called generators) [2, §1.4, p. 21]. We write B to denote a nonempty basis set of
generators {gl, .. ,g‘B|} and G(B, +) to denote the free group with binary operation +.

Definition 9. Rotman Presentation[4, p.239] Let X = {¢1,...},A = {v=>kg;,v,9; € X}
be a set of generators of members of a nonempty set X and set of relations between members of X
and the generators in X. A mapping of the form {X, A} — G, a free group, is called a presentation.

Definition 10. Let 2% be the collection of cell complexes in a CW space K, E € 2 basis B € G,

k; the i'" integer coeficient in a linear combination Y k;g; of generating elements g; € B. A free
i’j
group G presentation of F is a continuous map f : 25 — 2K defined by

f(E): U3:Zkigjlv€E,gj€B,ki€Z
4,J
E — free group G
:G({gl7"'9g|3|}7+>'

Lemma 11. |3, §4, p. 10| Every homotopic cycle in a space X has a free group presentation.

Here are two main results.
Theorem 12. Every homotopic cycle in a CW space has a free group presentation.
Theorem 13. Every homotopic nerve in a CW space has a free group presentation.

Remark 14. An application of nerve complexes is given in terms of the approximation of video
frame shapes.
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Uniform measures in Euclidean space
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A uniform measure in Euclidean space R is a measure that assigns to each ball B(z,r) with
center x in the support of the measure, a mass dependent of r and independent of the choice of .

For example any invariant measure of a subgroup of the isometry group of R is uniform, and this
sub-class of uniform measures are called homogeneous measures. There are known a few examples of
non-homogeneous uniform measures, such as the volume measure of the "light cone" {22 49?422 =
w?} C R

The study of uniform measures in Euclidean space was initiated by David Preiss as the crucial
ingredient of his 1987 proof of the Besicovitch conjecture [4], and one motivation for extending
this study is to understand the structure of measures in general geometry. It is known (see [1])
that a uniform measure must be a multiple of the k-dimensional area measure restricted to a k-
dimensional analytic variety, and the classification of k-dimensional uniform measures remains a
difficult open problem, still open even in the plane (see also [2], [3]). I will present a classification
[5] of 1-dimensional uniform measures in RY, and mention some open questions for more general
dimensions. This is joint work with Paul Laurain, from Paris 7 University.
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Centralizers of elements in Lie algebras of vector fields
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Let K be an algebraically closed field of characteristic zero and A = K[z, ..., x,] the polynomial
ring over K. A K-derivation D of A is a K-linear mapping D: A — A that satisfies the rule:
D(ab) = D(a)b+ aD(b) for all a, b € A. If K = R then every derivation D on R[z1,...,x,] can
be considered as a vector field on R™ with polynomial coefficients. The vector space W, (K) (over
the field K)of all K-derivations (or vector fields) on the polynomial ring A is a Lie algebra over K.
Any derivation D € W,,(K) can be uniquely extended on the field R = K(z1,...,x,) of rational

functions in n variables by the rule: D(a/b) = (D(a)b— aD(b))/b?, the vector space W, (K) of all
derivations on R is also a Lie algebra, it is in fact the Lie algebra of all vector fields with rational
coefficients on K".

Recall that for a given Lie algebra L and its element = € L the set Cr(z) ={y € L: [z,y] =0}
is called the centralizer of x in L. The centralizer C(x) is a subalgebra of the Lie algebra W,,(K)
containing the element xz. The structure of centralizers of polynomial derivations is of significant
importance due to applications in differential equations and geometry (see, for example [1], [2]).

Let p and ¢ be algebraically independent irreducible polynomials from the ring A. A polynomial
f € A will be called p-g-free if f is not divisible by any homogeneous polynomial in p and ¢ of
positive degree. One can write every polynomial g € A in the form gggi, where gg is a p-g-free
polynomial and g1 = h(p, q) for some homogeneous polynomial h(s,t) € K[s,t]. The (total) degree
of h in s,¢ will be called the p-g-degree of g and denoted by deg, ,g. The following result gives a
characterization of a centralizer of a polynomial derivation if its field of constants (in the field of
rational functions) satisfies certain restrictions:

Theorem 1. Let Dy € W,(K) be such a derivation that its field of constants KerDy in the field
of rational functions K(xy,...,x,) is of transcendence degree one and contains no nonconstant
polynomials. Then KerD; = K(g) for some irreducible and algebraically independent polynomials
p, ¢ € Klzy,...,2,] and Dy = hf(p,q)Do for some homogeneous polynomial f in the variables p, q,
p-q-free polynomial h and irreducible derivation Dy. Further, the centralizer C = Cyy,, (D) is one of
the following Lie algebras: (1) C = Klp, qlmhDy, where K[p, qly, is the linear space of homogeneous
polynomials in p,q and m = deg,,, f, (2) C = (K(2)D1 + - - +K(2) D) N Wi (K) for some linearly
independent with Dy derivations D, ..., Dy € C over the field K(xq,...,2y,).
Moreover, C' is of finite dimension over the field K.
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The class of quasisymmetric mappings on the real axis was first introduced by A. Beurling and
L. V. Ahlfors [1]. Later P. Tukia and J. Véisili |2| considered these mappings between general metric
spaces. See, e.g., [3] for an overview of the results in this direction. In our work we generalize
the concept of quasisymmetric mappings to the case of general semimetric spaces. We establish
conditions under which the image f(X) of a semimetric space X with the triangle function ®;
under n-quasisymmetric embedding f is a semimetric space with another triangle function ®,.
Condition under which f preserves a Ptolemy inequality is also found as well as condition under
which f preserves a relation “to lie between” imposed on three different points of the space.

Let X be a nonempty set. Recall that a mapping d: X x X — RT RT =[0,00) is a metric if
for all z,y, z € X the following axioms hold: (i) (d(z,y) = 0) & (z = y), (ii) d(z,y) = d(y, x), (iii)
d(z,y) < d(x,z) + d(z,y). The pair (X,d) is called a metric space. If only axioms (i) and (ii) hold
then the pair (X, d) is called a semimetric space.

Definition 1. Let (X, d), (Y, p) be semimetric spaces. We shall say that an embedding f: X — Y
is n-quasisymmetric if there is a homeomorphism 7: [0, 00) — [0, 00) so that

d(z,a) < td(z,b) implies p(f(x). f(a)) <n(t)p(f(x), f(b))
for all triples a, b, z of points in X and for all ¢ > 0.
A definition of a triangle function was introduced by M. Bessenyei and Z. Péles in [4].

Definition 2. Consider a semimetric space (X,d). We say that ®: RT™ x RT — R* is a triangle
function for d if @ is symmetric and monotone increasing in both of its arguments, satisfies ®(0,0) =
0 and, for all z,y, z € X, the following generalized triangle inequality holds:

d(x,y) < ®(d(z,2),d(y, 2)).

The most important triangle functions ®(u,v) which generate well-known types of metrics and
their generalizations are u + v (metric), K(u 4 v) (b-metric with K > 1), max{u,v} (ultrametric).

Proposition 3. Let (X, d) be a semimetric space with the triangle function ®1, (Y, p) be a semimet-
ric space and let f: X — Y be a surjective n-quasisymmetric embedding. Suppose that the following
conditions hold for ®1 and for some function ®5: Ri — Ry
(i) @4 is symmetric, monotone increasing in both of its arguments and satisfies ®(0,0) = 0,
(i) APy(z,y) < P1( Az, Ay) and Po(Ax, \y) < APa(x,y) for every X > 0,
(i) For every t1,ty € Ry \ {0} the inequality

1 1 1 1
1< P, <, > implies 1 < Pq <, ) ) (1)
1t n(t1) n(tz)

Then ® is a triangle function for the space (Y, p).
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In what follows under Ptolemaic spaces we understand semimetric spaces (X, d) for which the
well-known Ptolemy inequality

d(z,z)d(t, y) < d(z,y)d(t, z) + d(z, t)d(y, z)
holds. Note that this inequality does not imply the standard triangle inequality in (X, d).

Proposition 4. Let (X,d) be a Ptolemaic space, (Y, p) be a semimetric space and let f: X — Y
be a surjective n-quasisymmetric embedding. If for every ti,ts,t3,t4 € RT the inequality

titatsts < tita + tste dmplies n(t)n(t2)n(ts)n(ta) < n(t)n(t2) +n(ts)n(ts), (2)
then (Y, p) is also Ptolemaic.

Let (X,d) be a semimetric space and let x,y, z be different points from X. We shall say that the
point y lies between x and z if the equality d(z,z) = d(z,y) + d(y, z) holds. K. Menger [5] seems
to be the first who formulated the concept of “metric betweenness” for general metric spaces.

Theorem 5. Let (X,d), (Y,p) be semimetric spaces and let f: X — Y be n-quasisymmetric em-
bedding. If the homeomorphism n has the form

1 _

3 +2(3.1-3) ’
where Wy, Wo are some continuous, antisymmetric, strictly increasing by the first variables, defined
on [0,1] x [0,1] functions of two variables such that ¥1(1,0) = Wy(1,0) = 1/2, then f preserves
metric betweenness.
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Contractions of Lie algebras are a kind of limit processes between orbits of such algebras. In
1953, Inonii and Wigner studied special contractions of Lie algebras as a part of broader study
of contractions of Lie groups and their representations. These contractions were generalized by
Doebner and Melsheimer in 1967. A rigorous general definition of contractions of Lie algebras was
given by Saletan in 1961. He also studied contraction whose matrices are first-order polynomials
with respect to contraction parameters. Since then, a number of conjectures about various ways of
realizing contractions of Lie algebras had accumulated in the literature.

Definition 1. Let V be an n-dimensional vector space over F = C or F = R, n < oo, and let
L, = L, (F) denote the set of all possible Lie brackets on V. Given y € £,, and U € C((0,1], GL(V)),
define the family of u. € L,, € € (0,1], by pe(z,y) = U~ u(Ucx,Uy) ¥ 2,y € V. If for any
x,y € V there exists the limit lim._, 4o pe(z,y) =: po(z,vy), then go = (V. po) is a well-defined Lie
algebra and is called a contraction of the Lie algebra g = (V. u). The procedure g — go providing
go from g is also called a contraction. If a basis of V is fixed, the parameter matrix U, = U (e),
e € (0,1], is called the contraction matriz of the contraction g — go.

Definition 2. The contraction g — go is called a Inéni—Wigner (IW) contraction if its matrix
U, can be represented in the form U. = AW_P, where the matrices A and P are nonsingular and
constant (i.e., they do not depend on ) and W. = diag(c™,...,e%) for some ay,...,a, € R. The
n-tuple of exponents (aq, ..., ) is called the signature of the generalized IW-contraction g — go.
A simple IW-contraction is a generalized IW-contraction with signature consisting of zeros and ones.

The following assertion, which stood as a conjecture for a long time, was proved in [5].

Theorem 3. Any generalized IW-contraction is equivalent to a generalized IW-contraction with an
integer signature (and the same associated constant matrices).

One of these conjectures was that any contraction of Lie algebras can be realized as a general-
ized IW-contraction. This is true for contractions between three-dimensional real or complex Lie
algebras. Consider four-dimensional real Lie algebras defined, up to antisymmetry of Lie bracket,
by the following nonzero commutation relations:

2451:  [er,ez] =e1, [es3,eq] = e3;
AL @ Aso: ea,eq] = e, [e3,eq] = ea + e3;
Agr: [es,eq] = e1, [e3,eq] = eo;
Agr0: [er,e3] = e1, [e2,e3] = ea, [e1,e4] = —ea, [e2,e4] = e1.

Hereafter we use the Mubarakzyanov’s nomenclature for low-dimensional Lie algebras, and g..
denotes the complexification of the algebra A . All contractions of four-dimensional real Lie algebras
were realized in [1, 2] via generalized IW-contractions except two contractions, 2421 — Ay & Az
and A410 — A1 @ Aszo. Since the complexifications of the algebras 241 and A4 19 are isomorphic,
there was only one exception for the complex case, 2g2.1 — g1 D g3.2.

Theorem 4 ([4]). (i) There exists a unique contraction between four-dimensional complex Lie al-
gebras, 2gs1 — g1 D g3.2, that is not equivalent to a generalized IW-contraction.
(#i) Precisely two contractions between four-dimensional real Lie algebras, 2A21 — A1 ® A2 and
Ay10 = A1 @ Az, cannot be realized as generalized IW-contractions.
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Combining the results of [1, 2, 4] also yields the following assertion.

Theorem 5 ([4]). Any generalized IW-contraction between four-dimensional complez (resp. real)
Lie algebras is equivalent to one with parameter exponents in {0,1,2,3}. The exponents in {0,1,2}
suffice for all such contractions except 2As1 — Ag1, As10 — As1 and so(3) & Ay — Agq in the
real case and 2g2.1 — g4.1 in the complex case, where the minimal tuple of exponents is (3,2,1,1).

Definition 6. The contraction g — gg is called diagonal if its matrix U, can be represented in the
form U, = AW_.P, where A and P are constant nonsingular matrices and W = diag(fi(¢), ..., fa(e))
for some continuous functions f;: (0,1] — F\{0}.

Theorem 7 ([5]). Any diagonal contraction is equivalent to a generalized IW-contraction with an
integer signature.

Consider the n-dimensional (n > 5) solvable real Lie algebras a := As35 ® (n — 5)A; and ag :=
Ag1 @ Az & (n — 4)A; whose nonzero commutation relations are exhausted, up to antisymmetry
of Lie bracket, by the following:

a: ler,e3] =e3, [ea,eq] =eq, [e1,e2] = e5, ag: [e1,e3] =e3, [ea, eq] = eq4.

Theorem 8 (|3|). The Euclidean norm of any contraction matriz that realizes the contraction of the
algebra a to the algebra ag approaches infinity at the limit point. The same s true for the complex
counterpart of this contraction.

Definition 9. A realization of a contraction with a matrix-function that is linear in the contraction
parameter is called a Saletan (linear) contraction.

Theorem 10 ([6]). Up replacing the algebras g and go with isomorphic ones, every Saletan con-
traction g — go 1s realized by a matriz of the canonical form

E"gJ" e -aJl, or, equivalently, E"aJit @& JJ* +eE",
where ng + -+ - +ngs =mn, E™ is the m x m identity matriz, and JY' denotes the m x m Jordan block
with an eigenvalue .

Hence any Saletan contraction can be realized by a matrix of the form AS.B, where A and B
are constant nonsingular matrices and the matrix-valued function S; is in the above canonical form.

The tuple (ng;ni,...,ns), where ny, ..., ng constitute a partition of the dimension n — ng of the
Fitting null component relative to Uy and ng € {0,...,n}, is called the signature of this Saletan
contraction.
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Geometric and Topological properties of self similar sets are well understood when the associated
Iterated Function System (IFS) satisfies Open Set Condition (OSC)[1]. OSC fails if IFS is said to
have overlaps. Lau and Ngai in [2] introduced Weak separation property (WSP) which allows limited
overlaps of copies and is less restrictive than OSC. This separation property was extensively studied
by Zerner [3]. The notion of separation allows to explicitly calculate the Hausdorfl dimension of
self-similar sets. But it can be still challenging. Another notion of separation termed as Finite Type
Condition (FTC) introduced in [3] by , which enhances the domain of self similar sets. The question
of equivalence was first raised in [4], they proved that it was not true in general for d > 1 IFS in
R™. We characterise Weak separation property in terms of neighbourhood sets.

Notations and Definitions
Let S = {S1,...,Sm} be system of contracting maps on R : [S;(z) — S;(y)| = ri|lz — y|, where
1 > r; > 0. Then 3 unique compact set K such that K = [J; S;(&). K is called self similar
set associated to IFS §. OSC states that there is an open set O # ¢ such that S;(0) C O and
Si(0)NS;(0) = ¢ fori,j € {1,....,m}. Let I = {1,...,m} be finite set of symbols and and i,j be
words from I* = | J{I" : n =1,2,...}. From [5] consider the following :
F={S" 8 ; ijer}
subset of topological group G of all similarities on R. From [6] given any a > 0, let
I, = {i =iyig...0y € T%; |7"i| <a< |7'i1i2.‘.in_1|}

IF'S satisfy weak separation property if there are x € R and integer | € N such that for any a > 0 and
finite word o, every closed ball with radius a, contains atmost | distinct elements of type Si((Sy(x))
foriel,.

Definition : 1 - The notion of Neighbourhood Sets defined in [7] is very helpful to study finite
type condition. For o € Z, let hy, ..., by, be elements of set {S;(0),Si(1) : i € I,}. Let F be union
of all possible net intervals such that

Fo ={[hi,hit1] : 1 <i <mg}

Suppose A € F and denote contraction map Ta(x) = rz + ¢ where r > 0 such that TA([0,1]) = A.
Similarity 7'(z) = Lz + ¢ is neighbourhood set of F, if 3 i € I, such that

A CS(0,1) and T=Tx'cS;

Definition : 2 IFS satisfies finite neighbourhood condition if it has finite neighbourhood set.
The main result follows the following lemma.

Lemma : 1 Presume that finite neighbourhood condition holds for system S§. Then 317 > 0 such
that any 1 > a > 0, 1,j € I, and p,q € {0,1} either

Si(p) = Si(q)  or  [Si(p) — S5(q)] = la

Lemma : 2 Suppose that K = [0, 1] is self similar set of IFS & and WSP holds. For 6 >0, 3 a
finite set Ns so that for any a > 0 and i,j € I, either

1(Si([0,1]) N S;([0,1))) < da  or Sy 'oS;EN;
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Theorem : Let K = [0, 1] be the self similar set associated to system of contraction maps S
such that weak separation property holds. Then finite neighbourhood condition is satisfied for S.
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Cosmology and Big data or data analysis, of which topo-geometrical data analysis is rapidly
becoming a main component, are both burgeoning and increasingly related fields at the moment.
Cosmology is transitioning from a theoretical discipline towards one with increased focus on obser-
vations, resulting in a massive surge of data that demands increasingly more sophisticated methods
to glean meaningful information. In a related development, geometry and topology have witnessed
a tilt from purely theoretical fields towards strong focus on application. A foray into “big data”
quickly brings to front two of the central statistical challenges of our times — detection and classifi-
cation of structure in extremely large, high-dimensional, data sets. Among the most intriguing new
approaches to this challenge is “TDA” or “topological data analysis,” the primary aim of which is
providing topologically informative pre-analyses of data, which serve as input to more quantitative
analyses at a later stage. Algebraic and computational topology are the foundational pillars on
which TDA rests.

I will present a survey on the theoretical and computational aspects of topological data analysis
[1], simultaneously exploring up the application component via analyses of cosmological datasets.
The dataset we will focus on is of the Cosmic Microwave Background, obtained by the recently
concluded Planck mission, with a view to compare the observations with the predictions of the
standard cosmological model, that predicts the initial conditions in the Universe to be that of an
isotropic, homogeneous Gaussian random field [2]. At the epoch of recombination in the infant
stage of the Universe, some 370,000 years after the Big Bang, matter and radiation separate for the
first time, and radiation permeates freely in the Universe. This free-streaming radiation, that we
observe as the Cosmic Microwave Background, encodes a treasure trove of information about the
initial conditions and properties of matter distribution in the Universe [3].

The tentative outline of my presentation, in three parts, is as follows:

e A review of the theoretical background on geometry and topology consisting of Minkowski
functionals, homology and its hierarchical extension persistent homology.

e A description of the main computational components for a variety of settings relevant to
cosmological data sets, such as particle distributions and images in 2D and 3D. I will give
a brief but in-depth account of the computational backbone, which relies on appropriate
meshing of the domain, and hierarchical embedding of levelsets in filtration data structure.

e Building up on the first and the second item, I will present case studies involving the CMB
and the SDSS dataset.

The above mentioned tentative structure is subject to time constraints, and the second item may
be expunged for short duration of talk.
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A flow X on a manifold with boundary M is called a Morse flow if it satisfies the following
conditions:

(1) the set of non-wandering points (X) has a finite number of points that all are hyperbolic;

(2) if u,v € Q(X), then the unstable manifold W*"(u) is transverse to the stable manifold W*(v)
in IntM;

(3) the restriction of X to OM is a Morse flow (the stable and unstable manifolds have a
transversal intersection).

We consider Morse flows with singularities on M. There are 6 types of singularities which are
determined by their indices.

The pair (p, q) is called the index of a singular point where p + ¢ is equal to dimension of stable
manifold of X and p is the dimension of the flow restricted to the boundary. In this case p = 0,1
or 2 and ¢ = 0 or 1. For example, a source has index (0,0) and a sink has index (2,1).

The surface F' is the closure of intersection of Int M with boundary of a regular neighborhood
for the union of the 1-dimensional stable manifolds.

Arcs and circles {u,U,v,V} on F are intersections of unstable manifolds for singular points of
index (1,0), (0,1),(1,1),(2,0) and the surface F.

The set (F,u,U,v,V) consisting of a surface with boundary, a set of circles and arcs embedded
in it as described above is called a Morse flow diagram.

Theorem 1. Two Morse-Smale flows on S-manifold with a boundary are topologically trajectory
equivalent if and only if their diagrams are homeomorphic.

Morse flow diagrams have the following properties:

(1) U;, V; € Int M, Intu;, Into; C Int M, du;, dv; C OM;

(2) oU;0 U; w;, OV;0 U; g5

B)UNU;=0ifi#j4, wNu=0ifi#j, VinV;=0ifi#j wvnNv=0ifi#j,
uiﬂUj 2@, ”UiﬂVj Z(Z), ﬁuzﬂavj = 0.

(4) Uy, is a closed curve or it belongs to a left-hand turn cycle which consists of U; and uj; the
similar property holds true for V.

(5) if we cut F along u; and do spherical surgeries by U-cycles then we get a union of 2-disks.

Theorem 2. If a surface F' with 4 sets of curves has the properties 1-5, then it is a diagram of a
Morse flow.
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Let Ry, n be the set of m x m matrices over a commutative ring R with identity e # 0. Denote
by I, the identity n X n matrix and by 0,,, the zero m x n matrix. For any matrix A € R, , At
denotes the transpose of A. We will denote by GL(m,R) the set of invertible matrices in Ry, ,,,. We
will write C|; for the the i-th column of the matrix C' € Ry, ,, and vec (C') will denote an ordered
stock of columns of C| i.e.,

Ch

Cla2

vec (C) = \L

Cin
In this note we present alternative methods for finding solutions of the Sylvester matrix equation
AX -YB=C, (1)

where A, B and C are given matrices of suitable sizes over a commutative domain.

This equation has been considered by several authors including Roth [12] over a field, Hartwig
[6] over a regular ring, Gustafson [5] over a commutative ring with identity, Emre and Silverman
[3] over a polynomial ring, Ozgiiler [7] over a principal ideal domain, Daji¢ [2] over an associative
ring with unit. In general, Gustafson [5] has proved that equation (1) over a commutative ring R

0 B
equivalent. This is a generalization of Roth’s result [12], which gives the same criterion for the case,
where R is a field. Similar considerations on solvability of equation (1) can be found in original
paper [1].

1. Let R be a Bezout domain. Without reducing the generality we will assume that A € Ry, p,
B € R,, and C € R, ,, and X,Y are unknown m x n matrices over R. Using the Kronecker
product matrix equation (1) may be considered in the form of equivalent linear system (see [4])

(I, @ A)vec (X) — (B' ® I,,) vec (Y) = vec (C).

with identity has a solution (X,Y) over R if and only if the matrices [ 64 g ] and [ 40 } are

Theorem 1. Matriz equation (1) over Bezout domain R. is solvable if and only if matrices
[(In ® A) (Bt ® Im) Omml] and [(In ® A) (Bt ® Im) vec (C’)]
are column equivalent, i.e., the right Hermite normal forms of these matrices are the same.

Corollary 2. Let A; € Ry, Bi € Ry and C; € Ry, @ = 1,2. Matriz equations A1 X —Y By =
C1 and A3 X — Y By = Cy have a common solution over Bezout domain R if and only if matrices

(In® A1) (Bi®In) Omna and | © A1) Bl ®I,) vec(C1)
(I, ® As) (BL® L) Opmnn (I, @ Ay) (B @ I,) vec(Ch)

are column equivalent, i.e., the right Hermite normal forms of these matrices are the same.

We were using results of papers [9] and [10] for proving Theorem 1.

2. In this parch R is a principal ideal domain. We denote by (a,b) the greatest common divisor
of nonzero elements a,b € R. Let A € Ry, ,, and rank A = r. For the matrix A there exist matrices
U,V € GL(m,R) such that UAV = S4 = diag(a1,as,...,ar,0,...,0) is the Smith normal form of
A.
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Theorem 3. Let A € Ry, ,m, B € Ry, C € Ry, and rankA = p, rankB = q. Further, let
Ua,Va € GL(m,R) and Up, Vg € GL(m,R) such that
UaAVy = Sy = diag(ar,az,...,ap,0,...,0), UpBVp = Sp =diag(bi,bs,...,b,,0,...,0).
Matriz equation (1) is solvable over R if and only if
Jiu oo fig

: . : 0y p—
UpCVg = ’ ’ ! pnma and (ai, bj)|fl] (dz’vz’des)
fpl s qu

Om—p,q ‘ Om—p,n—q

foralli=1,2,....p1j=1,2,...,q.

It is clear that if matrices A € Ry, and B € Ry, ,, are nonsingular and (det A, det B) = ¢, then
matrix equation (1) is solvable for an arbitrary matrix C' € Ry, 5.

Suppose that matrix equation (1) is solvable under the conditions of Theorem 3. Then for
invariant factors a; and b; of matrices A and B respectively there exist «;;,8;; € R such that
a;oy; — Bijbj = fij foralli=1,2,...,pand j =1,2,...,q. Put

11 ... Qg 611 .o A qu_
Xy = : : and Yz = 3
Qp1 ... Qpq “8;01 A, . ﬁpq_
Then for arbitrary matrices P12, Q12 € Rpn—g, P21, Q21 € Rin—p g and Pao, Q22 € Ryyi—p n—q the pair
of matrices ;
Xa Pl?] Vgl and Yo=Uj'| P pas Ug'

Po1 Py Q21 Q2]

is the general solution of matrix equation (1). We note that Theorem 3 can be used for finding
solutions with some properties of equation (1) (see [8] and [11]).

XP—VAI[
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We analyzed in detail the cohomology structure of the symplectic form deformation and ap-
plied recently developed generalized transformations which were suggested in the classical works by
Enneper and Weierstrass about one and half century ago and succeeded in reformulating the "sym-
plectic" modification of the Monge-Ampere equation by means of specially constructed coordinates,
related with the natural projector expansion on T'(P(C)) and found its special solutions. Let us
consider a compact complex n-dimensional manifold M"™, endowed with the K&hler symplectic
form w € A2(M™) and define the related Monge-Ampere equation, describing a deformation of this
symplectic structure:

(w +i00¢)" = (exp f) w™ (1)

under the normalizing conditions

R A )

Mn
where ¢ € C°(M™;R) is a real valued function on M™ and 9 is the complex O-bar differential,
corresponding to the standard differential splitting d = 9 ® 9 : A(M™) — A(M") on the complex
manifold M™. In a general case it was supposed [16] that if the two-form (w +i00p) € A*(M™)
is real valued and the first Chern class ¢;(M™) = 0 of a Ké&hler manifold M™, then there exists a
Riemannian metric g : T'(M™) x T(M™) — R of the Calabi-Yau type, whose holonomy group [5, 8]
coincides with a subgroup of the Lie group SU(2), generating, in particular, a so called Einsteinian
metric. The equation (1) is always [16] solvable, yet its holonomy groups, in general, not classified
and its unitarity remains to be open.

We here also remark that there exists a slightly different modified Monge-Ampere type deforma-
tion equation

(w + dJ*dp)" = (exp f)w", (3)
on a real symplectic manifold M?" ~ M", where f € C*(M*;R) and J : T(M*") —
T(M ) J? = —1I, is a suitably chosen nonintegrable quasi-complex structure on the manifold

M?" and J* : T*(M?") — T*(M?") denotes its conjugate. It was proved [2] that if the structure
J : T(M?") — T(M?") is integrable, then the equation (3) reduces to the Monge-Ampere equation
(1) on the related complex manifold M™ ~ M?" owing to the classical Newalander-Nirenberg [10]
criterion. Otherwise, if the equation (3) is solvable for its arbitrarily chosen right hand side, then
the quasi-complex structure J : T(M?") — T(M?>") proves to be necessary [2, 9, 11] a complex
one, once more reducing the equation (3) to the Monge-Ampere equation (1).
In our note we are interested in the following "symplectic" modification
(w+ dd®p)? = (exp f) w? (4)
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of the Monge-Ampere (1) on the complex Kéhler manifold M? = P,(C), where p € A?(M?) is a
searched for two-form and d® := (—1)**1 x, dx,,dd* = —d®d, denotes the symplectic Hodge type
differentiation. It is well known that any compact two-dimensional Kéhler manifold M? with the
Chern class ¢1(M?) = 0 is hiper-Kéhler, possessing exactly three Kéhler fundamental forms w;,w;
and wi € A%(M*?), corresponding to three complex structures I, J and K : T(M*) — T(M*?). As for
the compact projective two-dimensional Kihler manifold M? = P,(C) the Chern class ¢1(M?) # 0,
it is not hiper-Kéhler, its holomorphic volume two- form is not composed of the symplectic forms
wy and wx € A?(M*). Notwithstanding this fact, based on the equalities (??) and the well known
[1, 14, 15] relationship

*s = —1N (5)
for an arbitrary "primitive" holomorphic volume two-form n € A? (M?), satisfying the additional
condition n A w = 0, one easily derives that for any two cohomological "primitive" holomorphic
volume two-forms € and Qs € A7 ,(M?) there holds the following interesting relationship:

Q1 — Qo = dd*2 (6)

for some smooth two-from v € A%(M?), solving the problem (4) for the case when the symplectic
structure w € A%(M?) is replaced by a holomorphic volume form €2 € A? (M?). Having analyzed
in detail the cohomology structure of the two-form expression (w + dd®p) € A?(M?) and ap-
plied generalized transformations which were suggested in the classical works by Enneper [4] and
Weierstrass  [13] about one and half century ago and recently developed in [6], we succeeded
in reformulating the "symplectic" modification of the Monge-Ampere (4) by means of specially
constructed coordinates, related with the natural projector expansion from in P»(C) and find its
special solutions.
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Let G be a compact abelian group, I' be its dual group, i.e., the set of all continuous characters
on G. C(G), L,(G),0 < p < oo, are classical Banach spaces (integrals are considered with respect
to the Haar measure on G). M(G) denotes the Banach space of all regular Borel measures on G.
Convolution operations are defined by the usual ways and are denoted by ¢ x f, u [ for functions
f,¢ and a measure p € M(G). Below, H denotes a Hilbert space, S,(H), for p € (0,00), is the
space of operators in H from Shatten-von Neumann class S, (operators, whose singular numbers
are in the classical space [,). By S we denote the space of all operators in H. X,Y are Banach
spaces, L(X,Y") is a Banach space of all bounded linear operators from X to Y.

Definition 1. An operator T': X — Y can be factored through an operator from S,(H) (through an
Sp-operator), if there are operators A € L(X,H), U € S,(H) and B € L(H,Y') such that T'= BUA.
If T' can be factored through an operator from S,(H), then we put v (7') = inf ||A[|o,(U) || B[,
where the infimum is taken over all possible factorizations of 7" through an operator from S,(H).

In [1], Giles Pisier gave a geometric characterization of Sidon subsets of I" (for the definitions and
formulations see |1, §4.b]). One of the main tool in his proof was the following result: For a function
f € C(G) and a convolution operator xf : M(G) — C(G), the necessary and sufficient condition
for the set of Fourier coefficients f = {]E('\,)} to be absolutely summable is that the operator xf can
be factored through a Hilbert space. It is clear that the last condition is the same as the condition
"the operator xf can be factored through an S..-operator".

We present some generalizations of this result (proving simultaneously the above one). In par-
ticular, we have

Theorem 2. Let f € C(G), 0 < g < 1 and 1/p = 1/q — 1. Consider a convolution operator
*f : M(G) — C(G). The set f of Fourier coefficients of f belongs to l, if and only if the operator
xf can be factored through a Schatten-von Neumann Sy,-operator in a Hilbert space. Moreover, if

f €lg, then 5s,(xf) = (Cer [F(3)|") /9. On the other hand, || x fI| = || fllc(c).

Instead of M(G), we can consider the spaces L,(G) in the theorem (changing some values of
parameters). Also, we can get some similar results for the factorizations of the convolution operators
through the operators of the Lorentz-Schatten classes S, (associated with the Lorentz sequences
spaces lyp).
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On the T-placedness of space of the permutation degree
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We shall say that a set P is of the type G in X if there exists a family

¥ ={Uas:a € A| A|< 7} of open sets in X such that (), 4 Uy = P (taken from [1]).

A subset A C X is said to be 7-placed in X, if for each z € X \ A there exists a set P € X of
type Gr in X such that z € P C X \ A (taken from [1]).

A permutation group X is the group of all permutations ( i.s. one-one and onto mappings X — X
). A permutation group of a set X is usuallay denoted by S(X). If X = {1,2,....,n}, then S(X) is
denoted by .S,,, as well.

Let X™ be the n-th power of a compact X. The permutation group 5, of all permutations, acts on
the n-th power X" as permutation of coordinates. The set of all orbits of this action with quotient
topology we denote by SP"X. Thus, points of the space SP"X are finite subsets (equivalence
classes) of the product X™. Thus two points (21, X2, ..., %), (Y1, Y2, ..., yn) € X™ are considered to
be equivalent if there is a permutation o € S, such that y; = x(o(i)) for all i = 1,2,...,n. The
space SP™X is called n-permutation degree of a space X. Equivalent relation by which we obtained
space SP"X is called the symmetric equivalence relation. The n-th permutation degree is always
a quotient of X™. Thus, the quotient map is denoted by as following: 77 : X" — SP"X. Where
for every x = (z1,22,...,zn) € X", m,((21,22,...,2,)) = [(x1,22,...,2,)] is an orbit of the point
x = (11,22, ....,0,) € X"

The concept of a permutation degree has generalizations. Let G be any subgroup of the group
Sp. Then it also acts on X™ as group of permutations of coordinates. Consequently, it generates
a G-symmetric equivalence relation on X™. This quotient space of the product of X™ under the
G-symmetric equivalence relation is called G-permutation degree of the space X and it is denoted
by SPAX. An operation SPf is also the covariant functor in the category of compacts and it is
said to be a functor of G-permutation degree. If G = S,,, then SPZ = SP". If the group G consists
only of unique element, then SPAX = X™ (taken from [2]).

Theorem 1. If the set SP™A is 7-placed in SP"X, then the set (75)~1(SP"A) is also T-placed in
X".
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The analogue of Darboux equation in Galilean space
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Let the surface F of the class C*(k > 2) in R} be given by the vector function 7 = r(u,v) in the
region D € R}, we will assume that the Cartesian coordinates R} are entered in z,y, z, and let kbe
the unit vector of the axis z. Each of the coordinates of the vector r(u,v) = {u, y(u,v), z(u,v)}

satisfies a certain differential equation. Let’s deduce it, for example, for function z(u,v).
Obviously, z(u,v) = (r(u,v), k). Then

Ry = (Tu,k), Ry = (Z’U7k)7 Zuu = (Tuua k)7 Zuy = (Tuvyk)a 2oy = (Tvvak)~

Using derivation formulas in R} we get

Zuu = F%lzv + L(n, k), zuw = F%sz + M(n, k), zyy = ngzv + N(n,k)

Where L, M, N is the coefficients of the second quadratic form, n is the surface normal.

If we introduce the notation
211 = 2uu — Thze, 212 = 2u0 — Do2u, 222 = 200 — L5920
then from (1) and (2) we obtain
z11 = L(n, k), z12=M(n,k), z22=DN(n,k)

The unit normal vector is determined by the formula

n=120 v B Yo
VT2 VYA

Yo

the for formula above gives a determination for the unit normal vector.
From (3) and (4) we obtain.

211 Z12 222
L:—? Yo + 23, M:—? Yo + 23, N:—?V95+Z3

v v (%

We have
(TL, k) = -

From equalities (5) and the formula for the Gaussian curvature K =

LN—M?2
9 j G
Darboux equation 211200 — 235 = y2K.
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A number of papers of mathematicians are devoted to the study of countable-to-one mappings, in
particular M.M. Luzin, P.S. Alexandrov, A.M. Kolmogorov, B.O. Pasynkov, Yu.Yu. Trokhymchuk.
In [1] a dense open set of points of local homeomorphism exists for any countable-to-one continuous
mapping of two manifolds of equal dimensions was proved. Moreover, for the existence of a dense set
of points of local homeomorphism, it suffices to require countable multiplicity of zero-dimensional
mapping, even for points of some subset of the second category in the image [2]. In the one-
dimensional case, the statement of the theorem remains valid for nowhere constant functions of
the first Baire class with the Darboux property and with the set of countable levels of the second
category in the image [3]. In paper [4] we consider the class of continuous on [0,1] functions
preserving digit 1 in three-symbol ()3—representation of a number and prove that any such function
is countable-to-one and it has at most two infinite level sets. If we neglect some set of the first
category, then with countable-to-one arbitrary B-measurable mapping of complete separable zero-
dimensional uncountable space there exists a dense set of points of local homeomorphism [5]. It
turns out that if quasi-continuous mapping of two complete separable metric spaces with the set of
countable levels of the second category is nearly continuous on dense open set and is semi-open and
pre-open, then it has a dense open set of points of local homeomorphism.
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Recall that a triangular norm is a binary operation * on the unit segment which is continuous, as-
sociative, commutative, monotone, for which 1 is the unit. The following are examples of triangular
norms: min, - (multiplication), a * b = max{a + b — 1,0} (Lukasiewicz t-norm).

Given a triangular norm *, we define a fuzzy metric on a set X as a function M : X x X x (0, 00) —
(0, 1] satisfying for all x,y,z € X and s,t € (0,00):

(1) M(z,y,t) > 0;

(2) M(x,y,t) =1 if and only if z = y;

(3) M(xa Y, t) = M(ya Z, t);

(4) M(x,y,t)« M(y,z,8) < M(xz,z,t+ s);

(5) the function M (z,y,-): (0,00) — [0, 1] is continuous
(see, e.g., |2]).

A fuzzy metric is said to be a fuzzy ultrametric (a fuzzy non-Archimedean metric) if * = min and
the following holds: (47) M (x,y,t)*xM(y, z,s) < M(z, z,max{t, s}). This is known to be equivalent
to the following: (47) M (z,y,t) « M(y,z,t) < M(x, z,t).

By I(X) we denote the set of all idempotent measures on a compact Hausdorff space X (see [5]).
This set is endowed with the weak* topology. In this way we obtain a functor in the category of
compact Hausdorff spaces and continuous maps.

A standard construction allows us to consider the set of idempotent measures of compact support
for any Tychonov space X; we keep the notation (X)) for this set.

Let (X, M) be a fuzzy ultrametric space. A fuzzy ultrametric M on the set I(X) is defined in
[3]. The construction (I(X), M) determines a functor in the category of fuzzy ultrametric spaces
and non-expanding maps.

We continue the investigations of the mentioned paper as follows. The idempotent measure
monad on the category of fuzzy ultrametric spaces is an idempotent counterpart of the probability
measure monad on the same category which is introduced and investigated in [4]. Also, one can
prove analogous results for the functor and monad of another class of non-additive measures, namely
the max-min measures (see, e.g., [1]).

REFERENCES

[1] V. Brydun, A. Savchenko, M. Zarichnyi. Fuzzy metrization of the spaces of idempotent measures. European
Journal of Mathematics. 6(1) : 98-109, 2020.

[2] A. George, P. Veeramani. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64 : 395-399, 1994.

[3] Changqing Li, Z. Yang, Fuzzy Ultrametrics Based on Idempotent Probability Measures, The Journal of Fuzzy
Mathematics. 22(2) : 463-476, 2014.

[4] A. Savchenko, M. Zarichnyi. Probability Measure Monad on the Category of Fuzzy Ultrametric Spaces. Azerbaijan
Journal of Mathematics, 1(1) : 114-121, 2011.

[5] M. M. Zarichnyi. Spaces and maps of idempotent measures. Izv. RAN. Ser. Mat. 74(3) : 45-64, 2010

130



About one class of continual approximate solutions with arbitrary
density

Olena Sazonova
(V. N. Karazin Kharkiv National University, Ukraine)
E-mail: olena.s.sazonova@karazin.ua

The kinetic Boltzmann equation is one of the central equations in classical mechanics of many-
particle systems. For the model of hard spheres it has a form |1, 2]

D(f) = Q(f, /). (1)

We will consider the continual distribution [3]:

+0o0o
f—/du / dpo(t,z,u, p)M(v,u,z. p), (2)
R3 0

which contains the local Maxwellian of special form describing the screw-shaped stationary equilib-
rium states of a gas (in short-screws or spirals). They have the form:

3
M) =p (1) el ®)

Physically, distribution (3) corresponds to the situation when the gas has an inverse temperature
8= % and rotates in whole as a solid body with the angular velocity w € R? around its axis on
which the point zg € R? lies,

[w x ul

, (4)

Trog =
w?

The square of this distance from the axis of rotation is

1
2 2

P = Sl (@ -z )
p is the arbitrary density, u € R? is the arbitrary parameter (linear mass velocity for z), for which
z|lw, and u + [w x z] is the mass velocity in the arbitrary point x. The distribution (3) gives not

only a rotation, but also a translational movement along the axis with the linear velocity

(w, u)

w?

Thus, it really describes a spiral movement of the gas in general, moreover, this distribution is
stationary (independent of ¢), but inhomogeneous.

The purpose is to find such a form of the function (¢, x,u, p) and such a behavior of all hydro-
dynamical parameters so that the uniform-integral remainder [3]

A= s [1D() - QUi (©
(t,z)ER4
R3
and its modification "with a weight":
~ 1
A= sw o [ID() = QUL Sl (7)
(t,z)eR? 1+ |t‘ e

become vanishingly small.
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Also some sufficient conditions to minimization of remainder A and A are found. In this work
we succeeded a few to generalize results, which obtained in [3]. The obtained results are new and
may be used with the study of evolution of screw and whirlwind streams.
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Painlevé VI Solutions From Equivariant ADHM Instanton Bundles

Jan Segert
(Mathematics Department, University of Missouri, Columbia MO, USA)
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We report on the paper [4] . Hitchin [3] had produced a pair of solutions )\SE for the Painlevé VI
differential equation from an SLy(C) action on the trivial bundle Ey — P3 over complex projective
space. We generalize to produce PVI solutions A\ for each nonnegative integer m from SLg(C)
actions on the equivariant instanton bundles E,, — P3 constructed in [2] via an equivariant version
of the Atiyah-Drinfeld-Hitchin-Manin construction [1].

Theorem 1. For each nonnegative integer m, the equivariant instanton bundle E,, yields a pair

of explicitly computable algebraic Painlevé VI solutions Nt (t), expressed implicitly in terms of the
rational function

(14 w) (=3 +w)?
(—14w) (3+w)?

t(w) =

and a rational function of the form

M) = 3w ) (C1+w) f(w) + Sgi(w)
" (—1+w) 3+w) (3+u12)fnj§(w) —24g?,i(w) ’

where f£ and g are even polynomials of degree at most 2m(m + 1).

We have found explicit Okamoto transfromations Q*! relating the two hierarchies of solutions A\t
in a manner reminiscent of the familiar creation operators for eigenstates of the quantum harmonic
oscillator. The following was proved case-by-case for a finite number of nonnegative integers m, and
conjectured to hold for all nonnegative integers m:

Theorem 2. For each nonnegative integer m < 4,
AL =QMAg, A =Q 7M.

We interpret each “creation operator" Q*! as a “shadow" of a putative creation operator for equi-
variant instanton bundles F),,, which is indicated by the dashed arrows in the summary diagram:

M —2 o —2 50— o —2

4

[ [ [ [ I

Ey -—------ >y By - > By -——----- > B3 -——----- > B

A A S|

Ao AL Ay Az Ay
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Asymptotic estimates for the widths of classes of periodic functions
of high smothness
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Let Ly,
| - llc, respectively.

“||p and

Denote by C’gp, 1 < p < o0, the set of all 27-periodic functions f, representable as convolution

™

a 1
o =P+ 1 [ea- 0500 aweR peBl={gely: lolp<l gLl

—Tr

with a fixed generated kernel W5 € Ly, 1/p+1/ p' =1, the Fourier series of which has the form
S[W (¢ kt 5 L R k) >0 2
5] )—Zw cos (kt——= |, BreR, (k) >0. (2)

A function f in the representation (1) is called (¢, 3)-integral of the function ¢ and is denoted
by jggo (f = jggo). If (k) # 0, k € N, then the function ¢ in the representation (1) is called
(1, B)-derivative of the function f and is denoted by fg’ (p = fg) The concepts of (v, 3)-integral
and (¢, B)-derivative was introduced by Stepanets (see [4]). Since ¢ € L, and W5 € Ly, then the
function f of the form (1) is a continuous function, i.e. C’gp C C (see [4, Proposition 3.9.2.]).

In the case B, = 3, 8 € R, the classes quz;p are denoted by Cgp. For (k) = k", r > 0, the classes
Cg)’p and Cg’p are denoted by Wép and Wﬁp, respectively. The classes W[;,p are the well-known

Weyl—NagV classes. For ¢(k) = e’“""r, a >0, r >0, the classes C’w and C¢ are denoted by Ca’T
and C o " respectively. The sets C " are well-known classes of the generahzed Poisson integrals.

Let ‘J‘( be some functional class from the space C' (91 C C). The quantity

En(Mc =sup En(flo =sup i ||f =Tl (3)
fen fenTn-1€Ton-1

is called the best uniform approximation of the class 91 by elements of the subspace 7a2,-1 of
trigonometric polynomials 7,1 of the order n — 1.

The order estimates for the best approximations E, (K )¢ of classes K = Cg’p, 1 <p<oo, (and,

hence, classes Wy, C’g”; and C’g’,p) depending on rate of decreasing to zero of sequences ¢ (k) were
obtained, in particular, in the works of Temlyakov (1993), Hrabova and Serdyuk (2013), Serdyuk
and Stepanyuk (2014) etc.

If the sequences (k) decrease to zero faster than any geometric progression, then asymptotic
equations of the best uniform approximations are even known (see [3] and the bibliography available
there).
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In [3] it was shown that for such classes CY the following asymptotic equations take places

)

|| cos t],y 11
En(Cy,)o ~ EnlCE o ~ =5 u(n), 1<p<oo, S+ =1, (4)
where £,(C% ) = sup ||f = Su_1(f)llc, Sn_1(f) is the partial Fourier sum of order n—1 of the

B,p
W
feCBp

function f, and A(n)wB(n) as n — oo means that li_>rn A(n)/B(n)=1
For p = oo in the case of K = WZ 7 >0, and in the cases of K = C%" r > 1, and K = C¥
,00 B,00 8,00

(K = C’}_ﬁ ) for certain restrictions on sequences 9 and B the exact values of the best uniform
approximations are known thanks to the works of Favard (1936, 1937), Akhiezer and Krein (1937),
Krein (1938), Nagy (1938), Stechkin (1956), Dziadyk (1959, 1974), Sun (1961), Bushanskij (1978),
Pinkus (1985), Serdyuk (1995, 1999, 2002) etc.

B oo
For p = 2 and for arbitrary 8 = B € R, Y. ¥?(k) < oo the exact values for the quantity
k=1

En(CgJ)c are also known (see [2]).

Let K be a convex centrally symmetric subset of C and let by (K, C), dy(K,C), \n(K,C), and
7N (K, C) be Bernstein, Kolmogorov, linear, and projection N-widths of the set K in the space C
[1].

The results containing order estimates of the widths by, dy, Ay or wn in the case of K = C¢p

(and, in particular, Wj , and C}fp) can be found, for example, in the works of Tikhomirov (1976),
Pinkus (1985), Kornejchuk (1987), Kashin (1977), Kushpel’ (1989), Temlyakov (1990, 1993) etc.

[e.°]

Theorem 1. Let {81132, Bx € R, and (k) > 0 satisfies the condition Y 1*(k) < co. Then for
k=1

all n € N the following inequalities hold

n—1 % .
\/1E <w21( ) + QZ w21(k)> < PQ”(C%{Q’C) < Pznil(CﬁQ’C (Z ¢2 ) ’ (5)

where Py is any of the widths by, dn, An or TN .
1
3
: ( > P )) =
k=n-+1
0, then the following asymptotic equalities hold

Pon(C}, C) B 1 AN -
)}—WW 7;+mnmﬂ WW(ghwm>awm<g;ﬂW@> ;

PQn 1( 627

N[

n—1
If, in adition, ¢ /(k) satisfies the condition lim max< ¥(n) (Z ¢21(k)>

where O(1) are the quantities uniformly bounded in all parameters.
The equalities (6) are realized by trigonometric Fourier sums Sp—1(f).
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Some generalizations of the known theorems of the type of
geodesical unique definability

Helena Sinyukova
(State institution «South Ukrainian National Pedagogical University named after K. D.
Ushinsky»)
E-mazil: olachepok@ukr.net

The realized in [1] broadening to the noncompact but complete spaces of affine connection the well-
known Hopf-Bochner-Uano techniques ([3], for example) on the grounding the so called vanishing
theorems allowed to broad to the corresponding spaces some well-known theorems of the type of
geodesical unique definability ([2], for example). In particular, it is grounded that the next theorems
take place.

Theorem 1. Complete connected noncompact Riemannian C"-space V™ (n > 2, r > 4) with the
positive defined metric tensor and the Finstein tensor that doesn’t equal to zero identically, that
satisfies the recurrence conditions
(@B)  mj bl ik _ mleB)yrrigkl | L) pall) pik _ L p(ad) pat ik
Tijimnd"™ 9" B = T W™ + Lkt RGP ik — - Lijhi RO E™—
L (83) pal ik (@B) yyrijhl
— T BTET + T i W
where
B

ngl =n (5J@Rsz - 5£Rf}z) — ik (5]@3& — R ﬁ) + g5 (5k RS — Ry, B) ;
7.7 means the corresponding covariant differentiation, doesn’t admit non-trivial (different from
the affine) geodesic mappings in the large.

Theorem 2. Complete connected noncompact Riemannian C™-space V™ (n > 2, r > 4) with the
positive defined metric tensor and the FEinstein tensor that doesn’t equal to zero identically, that
satisfies the recurrence conditions

(aB) hipki _ plaB)rrrijk (aB)<xrid
kg =P WP+ B WY,
where o )
Pi(; :51' R.O;'—(SjR%,
W and W9 are some arbitrary tensors, correspondingly of the second and the third valence,

doesn’t admit non-trivial (different from the affine) geodesic mappings in the large.

Examples of the corresponding spaces are given.
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Some remarks on the Metrizability of F-metric spaces

Sumit Som
(Department of Mathematics, Adamas University, Kolkata, India.)
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Lakshmi Kanta Dey
(Department of Mathematics, National Institute of Technology Durgapur, India.)
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Abstract: In this talk, we will show that the newly introduced F-metric space, introduced by
Jleli and Samet in [1], is metrizable. Also, we deduce that the notions of convergence, Cauchy
sequence, completeness due to Jleli and Samet for F-metric spaces are equivalent to that of usual
metric spaces. Moreover, we show that the Banach contraction principle in the context of F-metric
spaces is a direct consequence of its standard metric counterpart.
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The surfaces with the flat normal connection and the constant
curvature of Grassmann image in Minkowski space

Polina Stegantseva
(ZNU, Zaporizhzhya, Ukraine)
E-mail: stegpol@gmail.com

Marina Grechneva
(ZNU, Zaporizhzhya, Ukraine)
E-mail: grechnevamarina@gmail.com

The use of the concept of Grassmann image of the surface extends the circle of the problems,
and it is the one of the methods of the study of the differential geometry of the surface. One
the problems is the problem connected with the proof of the existence of the surface with given
properties of its Grassmann image. In this paper, we consider the existence of the surface with
the flat normal connection and constant curvature of its Grassmann image in Minkowski space
'R4. The results of the solution of this problem depend on the type of Grassmann image. The
concept of the normal connection of the submanifold of Riemannian manifold has been introduced
by E. Cartan. The submanifolds with the flat normal connection have zero torsion. The important
property of the surfaces with the flat normal connection is the existence of the parameterization, in
which the first and two second quadratic forms can be reduced to the diagonal form simultaneously.
The surfaces with the flat normal connection and their images in Minkowski space also have the
additional properties.

If a time-like surface V2 C! Ry has the flat normal connection and the non-degenerate Grassman
image, then that Grassman image is the time-like surface. In case of the space-like surface with a
flat normal connection, its Grassmann image can be either a space-like surface or a time-like one.

The following existence theorems have been proved in this paper.

Theorem 1. Let any k € [0,1] is given. Then in the space 'Ry there exists the time-like C3
class surface with the flat normal connection and the non-degenerate Grassmann image with the
constant curvature K = k. In the case k = 0, there is a surface with a constant Gauss curvature
K =0; if k € (0,1], then there exists the surface with the given function of the Gauss curvature
K = (a2 +1)8(ul)d(u?), where ag = const, B(ul),5(u?)) - the continuous functions.

Theorem 2. Let any k € (—oo, —1] (k € (0,+00)) is given. Then in the space Ry there exists the
space-like C* class surface with the flat normal connection and the non-degenerate space-like (time-
like) Grassman image with constant curvature K = k. If k = 0, then there exists the surface with the
constant Gauss curvature K = 0; in the other cases there exists the surface with the given function
of Gauss curvature K (u',u?) = (1 — ad)B(u')§(u?), where ag = const,ap # +1, B(ul),5(u?) - the
continuous functions.

REFERENCES

[1] Amunos FO.A. I'eomempus nodmmnozoobpasut // K.: Haykosa mymka, 2002

[2] Bopucenko A.A. Buympennas u 6HEWHAA 2E0MEMPUA MHOZOMEPHHT T00MH02006pasut // M.: Usn-Bo
"Okzamen', 2003

[3] Ppeanesa M.A., Creranuesa ILI. O noseprrocmAaz co CMAUUOHAPHLLMU SHAYEHUAMY CEKUUOHHOT KDPUBUSHDL
2pacemanosa obpasa// Proceedings of the International Geometry Centre.— 2016.— 9.— (2).—-C.42-48

[4] JInmcuma B.T. Mwnozomeproie no6eprrocmu ¢ NAOCKOT HOPMAALHOT CEAZHOCTIBIO € NOCMOAHHOT KPUESUSHOT
zpaccmanosa obpasa // 3Bectus By3os. Martemaruka.— 2004.— 5.— C.47-51

[5] JIymucre FO.I., Yexkmaszsan A.B. Hopmasvhas c6a3HoCMb U NOOMH02006PA3UA C NAPAANEADHMU HOPMAADHBLMU
NOAAMU 6 MPocmparcmee nocmosnnot xpueusns // Urorn mayku u texH. Cep. IIpo6a. reom. — 1981. — (12)
C.3-30

140



[6] Crerammesa ILI., [I'peamesa M.A. I'paccmanos obpas meusomponnoli noseprrocmu nce6doeckaudosa
npocmpancmea // M3zBectus By3oB. Matemaruka.—2017.—(2).—C.65-75

141



The relation between T)-topologies with the weight 22 < k < 27!
on n-element set and 7j-topologies close to the discrete on
(n — 1)-element set

Anna Skryabina
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Polina Stegantseva
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E-mail: stegpol@gmail.com

It is common to speak that the topology on n-element set X has the weight & (or it belongs to
k-class), if the topology contains k elements. Let us designate the minimum neighborhood of the
element @ € X by M,. The concept of the vector of the topology (the nondecreasing sequence of
the reduced by 1 powers of the minimum neighborhoods of all elements of X) have been introduced
in [3]. In the work [3]| the theorem on three types of the vectors of Tp-topologies with the weight
21 < | < 2" (close to the discrete topologies) has been proved:

L. (0,..,0,ap), 1 <a, <n-1,

2. (0,...,0,1,..,1), 1 <k <n—2,and (), Mm = {y};

k

3. (0,...,0,1,1), Mp,_1 (M, = @.

If To-topology on n-element set induces close to the discrete Tp-topology on some (n — 1)-element
set, then such topologies are called consistent.

The fact that Tp-topologies with the vectors (0,...,0,ap—1,n), 1 < ap_1 <n—-2,2<a, <n-—1
(consistent with the close to discrete topologies of the first type) have weight 2"~2 < k < 2”1 has
been shown in [4]. The obtained results connected with the enumeration of Ty-topologies and the
calculation of Tp-topologies in the individual classes have been compared with the results [1], [2].

Ty-topologies with the weight 2"~ < k < 277! which are consistent with the close to discrete
topologies of the second and the third types have been considered in this paper. The fallowing facts
have been proved: these topologies do not form new classes, and such topologies are contained in
the same classes as Ty-topologies with vectors (0, ..., 0, ap—1, o).
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The Golomb and Kirch topologies on the set of nonzero integers

Ya. B. Stelmakh
(Ivan Franko National University of Lviv )
E-mail: yarynziya@ukr.net

The Golomb (resp. Kirch) topology on Z is generated by the subbase consisting of arithmetic
progressions a + bZ where a € Z and b is a (square-free) number, coprime with a. It is known that
the Golomb (Kirch) topology on the subspace Z* = Z \ {0} of non-zero integers is Hausdorff and
(locally) connected. In the talk we shall discuss the homeomorphisms of the Golomb and Kirch

topologies on Z* and N.

Theorem 1 (Banakh, Spirito, Turek). The space N with the Golomb topology has a unique self-
homeomorphism.

Theorem 2 (Banakh, Stelmakh, Turek). The space N with the Kirch topology has a unique self-
homeomorphism.

Theorem 3 (Spirito). The space Z°* with the Golomb topology has exactly two self-homeomorphisms.
Theorem 4 (Stelmakh). The space Z* with the Kirch topology has exactly two self-homeomorphisms.
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On symmetrization of univalent polynomials

Dmitriy Dmitrishin
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The problem of T-symmetrization of a univalent in the unit disc D function f(z) is easy solvable
by transformation f(1)(z) = [f(zT)]l/T, T = 1,2,... It does not work for univalent in D polyno-
mials because the T-symmetrized function is not necessary a polynomial. We suggest a procedure
which allows us to symmetrize several univalent in D polynomials, including Alexander polynomi-
als, Brandt polynomials, de la Vallée Poussin polynomials, Fejér polynomials, Suffridge polynomials,
and some others.
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Projective invariants of linear planar 3-webs

Irina Streltsova
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In this talk we present projective differential invariants of linear planar 3-webs. Linear 3-web on
the plane R?(z,y) is an unordered set of 3 linear foliations with the condition that leaves of any
pair of foliations are transversal to each other. Any such web is defined by the set of 3 solutions

w = w(x,y) to the Euler equation (see [1])

Wy = WWg.

We will consider actions of the group of projective transformations SL3(R) of the plane. This
actions carries over to the space of solutions of the Euler equation. Representations of the Lie

algebra sl3(R) by vector fields are

Xa = (a13 + (a11 — as3)> + a12y — asexy — azzr?)Oy+

+ (ags + asiz + (age — azs)y — az1vy — az2y®)oy,

where the matrix A = ||ajj|li j=1,2,3 € sl3(R).
Proposition 1. The vector fields
YA =Xa+ )\A(u')aw,
where
/\A(w) = (a21 — agly)wz + (a11 — a9 — G317 + agzy)w + az2x — aiz,
define representations of the Lie algebra sl3(R) on the total space of the bundle

" RZxR = R? 7(z,y,w) = (z,y).

Moreover, the vector fields X o are symmetries of the Euler equation.
1,2

Linear planar 3-webs are defined by a set of solutions w', w?, w3 to the Euler equation.

Proposition 2. The vector fields
X4 =Xa+ 2w + Aa(w?)ye + Aa(w?)dys
define a representation of Lie algebra sl3(R) on the total space of the bundle
7R x R = R, 7(z,y, wh,w?, wd) — (z,y).

Moreover, the vector fields X o are symmetries of the system of Euler equations

.| 2 _ 2, 2 3 _ 3,3
Wy = WWy, Wy =wWwWy, W, =W Wy

System of equations (1) defines the submanifold

By c JY (), B ={w'wl - wzl/ =0, w?w? — wz = 0,wiw? — wg = 0},

where J!(7) is the bundle of 1-jets of sections of this bundle. Let Ej C J*(7) be a kth prolongation

of this manifold.

A rational function I on the manifold E} is called a projective differential invariant of linear
3-webs of order < &, if Y%)(I) =0 on Ej for all A € sl3(R). Here Yff) is the kth prolongation of

the vector field X 4.

Solving the system of equations 7542) (I) =0, we get the following result.
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Theorem 3. The field of rational projective differential invariants of order < 2 of linear 3-webs is
generated by invariants of order 2

w?, (—w? + wwk + (w' — w)w? — wd(w' — w?) wl,
In=—= In=- — ;o Ty =—5~.
w3, Vwd, (w? — w3)(w! — wd) (wl — w?) Wiy

This field separates reqular SLz(R)-orbits in Es.

To describe the field of all projective differential invariants of linear 3-webs, we use the Lie-Tresse
theorem (see [2]).

Theorem 4. The field of rational projective differential invariants of linear 3-webs is generated by
the basis invariants Io1, 1o, Is3 and the invariant derivations

(—w? + w3)w! d

Vi=-— el
wlw? — whw3 — wlw? + wlwd + w?w3 — w2w?3 dx
n —w? + w? d
wlw? — wlw — wlw? + wiwd + w2wd — w2wd dy’
3 1y, 2
w® — ww d
o (v~ w)

L2 L3 Lyp2 Lyy3 2403 2w dr
wiwi — wlw; — wiw? + wliw’ + ww; — wiw? dx

—w? + w3 d
1,02 _ onlon3 _ 01,2 1,,3 2013 _ 20020003 i
wiwz; — wiwy — wpw? + wyw? + wAw; — wiws dy

This field separates reqular orbits.
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Ultrametric spaces of x-measures
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Recall that an ultrametric on a set X is a metric d that satisfies the strong triangle inequality
d(z,y) < max{d(zx, z),d(z,y)}, for all z,y,z € X.

A triangular norm is a binary operation % on the unit segment which is continuous, associative,
commutative, monotone, for which 1 is the unit.

In [1], the functor M* of *-measures acting on the category Comp of compact Hausdorff spaces
is defined for any triangular norm *. A x-measures on a compact Hausdorff space X is a functional
p: C(X,[0,1]) — [0,1] satisfying: 1) p(ex) =c,c € [0,1], 2) ple V) = pu(e) V u(v), 3) plexp) =
cx* p(p).

The set M*(X) of all x-measures on a compact Hausdorff space X is endowed with the weak*
topology.

The space M*(X) of *-measures of compact support can be also considered for any Tychonov
space X.

The aim of the talk is to consider the ultrametrization of the set M*(X) for any ultrametric
space X. Given r > 0 we define the set F,(X) of functions from C(X, [0, 1]) constant on the balls
of radius 7. R .

Similarly as in [2] we define an ultrametric d on M*(X) by the formula d(u, v) = inf{r > 0|u(p) =
v(p) for all p € F.(X)}.

We establish some topological and algebraic properties of the obtained ultrametric space (M*(X), d).
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Sweep of surfaces in Galilean space
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Galilean space R} is a three-dimensional affine space with a degenerate metric [1].

The basic geometric elements of a straight line, plane, and parallelism in Galilean space do not
differ from these concepts of Euclidean space. Significantly different spatial motions of these spaces,
that is, the transformation of space that preserves the distance between points.

Under the sweep of surface we mean a uniquely mapping of pieces of the surface at which the
distance between the points and the angle between the lines are preserved. It is allowed to cut the
surface into pieces and indicate the gluing methods [2].

B.M. Sultanov studied the sweep of surfaces consisting only of parabolic points [3|. These are
cylinders and cones. It is shown that parabolic points of the surface are divided into two classes:
parabolic and special parabolic.

It is proved that they have a different sweep on the plane. An example is given of cylinders equal
in Euclidean space, but in the Galilean space one of them is a parabolic surface, the other is special
parabolic. Moreover, they have different sweeps on the plane.

In this article, a surface sweep is obtained that is uniquely projected onto a general position plane
in Galilean space.

Definition 1. If between the points of the surface F' C R} and the points of the domain G in the
plane Oxzy, there is an unambiguous mapping, the distance between the corresponding points have
the same order and equal, then the domain G - sweep is called a surface F' in the plane Oxy.

In Euclidean space has a sweep only convex polyhedral cylindrical surface, cone. The degeneracy
of the Galilean space metric allows for the unfolding of surfaces of a wider class.

Theorem 2. The surface F € R} - width [a,b] and uniquely projected on the Oxy plane, has a
sweep G on the band a < x < b of the Oxy plane.

Let D be a domain on the plane in general position Oxy, and D = {(z,y) € R} : a < 2 <
b;o1(x) <y < @o(z)}, where p1(x), pa(x) are continuous functions in [a, b].

Consider a surface F : z = f(x,y) (x,y) € D with a boundary uniquely projecting onto the
boundary of the domain D.

Theorem 3. The surface F : z = f(x,y) is deployed to the area G = {(z,y) € R} :a <z <b;0 <
y < f;’f 1+ f2(z,y)dy} on the plane Oxy.

REFERENCES

[1] Artykbaev A., Sokolov D.D. Geometry as a Whole in Flat Spacetime, - "Fan", Tashkent, 1991.

[2] Alexandrov A.D. Convex Polyhedra, Springer-Verlag Berlin Heidelberg, (2005).

[3] Artykbaev A., Sultanov B.M. Research of parabolic surface points in Galilean space. // Bulletin of National
University of Uzbekistan: Mathematics and Natural Sciences. Volume 2. Issue 4, pp. 231-245, 2019.

148



Maximal distance minimizers. Examples and properties
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I will talk about the sets which have the minimal length over the class of closed connected sets
¥ C R? satisfying the inequality maxye s dist (y,2) < r for a given compact set M C R? and some
given r > 0.

For a given compact set M C R? consider the functional

Fp(X) := sup dist (y, X),
yeM
where ¥ is a closed subset of R? and dist (y, ) stands for the Euclidean distance between y and X.
Consider the class of closed connected sets ¥ C R? satisfying Fys(X) < 7 for some r > 0. We are
interested in the sets of the minimal length (one-dimensional Hausdorff measure) H'(X) over the
mentioned class (minimizers).

It is known that for all » > 0 the set of minimizers is nonempty. It is proven also that for each
minimizer of positive length the equality Fi/(X) = r holds. Furthermore the set of minimizers
coincides with the set of solutions of the dual problem: minimize Fj; over all closed connected sets
¥ C R? with prescribed bound on the total length H1(X) < I.

In [1] (for the plane) and in [2] (for the general case) some properties of minimizers have been
proven:

(a) A minimizer cannot contain loops (homeomorphic images of circles).
(b) For every point x € 3 one of two statements is true:
i there exists a point y € M (may be not unique) such that dist (x,y) = r and B, (y)NX =
0;
ii there exists an & > 0 such that Sy N B:(x) is either a segment or a regular tripod, i.e.
the union of three segments with an endpoint in x and relative angles of 27/3.
The minimizers for some sets M are known (see pictures) although usually this is not an easy task.
Recently (see [3]) at the plane the regularity of minimizers was proved.

Theorem 1. Let ¥ be a mazimal distance minimizer for a compact set M C R?. Then
(1) X is a union of a finite number of arcs (injective images of the segment [0;1]).
(ii) The angle between each pair of tangent rays at every point of ¥ is greater or equal to 27/3.
The number of tangent rays at every point of 3 is not greater than 3. If it is equal to 3, then
there exists such a meighbourhood of x that the arcs in it coincide with line segments.

REFERENCES

[1] Miranda, Jr., M. and Paolini, E. and Stepanov, E., On one-dimensional continua uniformly approzimating planar
sets. Volume 27 of Calculus of Variations and Partial Differential Equations, 2006.

[2] Paolini, E. and Stepanov, E., Qualitative properties of mazimum distance minimizers and average distance mini-
mizers in R™, volume 122 of Journal of Mathematical Sciences. New York, 2004.

[3] Yana Teplitskaya. On regularity of mazimal distance minimizers, arXiv preprint arXiv:1910.07630, 2019.

149



FIGURE 1.1. An example where M = 0Br(O), where R > 4.98r.

FIGURE 1.3. An example where M := {A, B,C}, ¥ is a tripod.
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Analog of Menchov-Trokhimchuk theorem for monogenic functions
in three-dimensional commutative algebra
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Many scientists worked on finding new weaker conditions for holomorphicity of complex-valued
functions: H. Bohr, H. Rademacher, D. Menchov [1], V. Fedorov, G. Tolstov, Y. Trokhimchuk |2, 3],
G. Sindalovski, D.Teliakovski, E. Dolzhenko, M. Brodovich and their multidimencional generaliza-
tions: A. Bondar, V. Siryk, O. Gretskii.

Here is one of Menchov conditions: function F(§) satisfies K" condition in point & if exists limit

. F(§) = F(&)
5151510 £E—& 1)

where £ belongs to union of two noncollinear rays with common starting point &g.

D. Menchov [1] has prowed that fulfillment of the condition A" in any point of domain D
(excluding not more than countable set) is sufficient for conformity of mapping F' in case if F' :
D — C is continuous univalent function. Y. Trokhimchuk [2] has removed univalency condition in
following theorem.

Menchov-Trokhimchuk Theorem. If function F': D — C is continuous in domain D and in
every its point, excluding not more than countable set, condition K" is fulfilled, then function F is
holomorphic i domain D.

Analog of Menchov-Trokhimchuk Theorem for monogenic functions in space Fjs.

Let A3 be 3-dimencional commutative associative algebra with unit 1 over the field C with basis
{1, p, p?}, such that p* = 0.

Let fix the real 3-dimencional subspace F3 := {{ = wey + yes + ze3 : x,y,z € R} C Az, where
the vectors ey, e, e3 — are linearly independent over the real field R, but, in general, not a basis
of the algebra As. Only one condition should be fulfilled: image of the E3 under the mapping f is
whole complex plane (see [5, 6]).

Function <I>’G: Q — Aj is called Gateaux derivative of function ®: Q@ — Aj3, with domain
Q2 C B3, if in any point ¢ € Q exists element ®(¢) € Az such that

SJm (8(C+5h) — 2(¢)) 0! = hdG(¢) Vhe Es. (2)

Function ®: ) — Aj is called monogenic in domain 2 C Fj3, if ® is continuous and has Gateaux
derivative in any point of Q (see [8, 11]).

Intersection of radical of algebra Az with linear space E3 is the set of non-invertible elements
which belongs to Es. This set is the straight line L := {cl : ¢ € R}, with direction vector [ € Ej.
Preimage of any point ¢ € C in F3 under the mapping f is the straight line LS := {¢+cl : ¢ € R},
where ¢ — element from E3 such that & = £(¢). Obviously, line L¢ is parallel to line L.

Let domain Q C Ej is convex in direction of straight line L (domain is called convex in direction
of straight line, if it contains every segment joining two points of domain and parallel to this straight
line).
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Consider next hypercomplex analog of Menshov condition K" in algebra Ajs for functions ® :
Q) — Aj, defined in domain 2 C FEjs.

Definition 1. Let say, that function ® : @ — Aj is fulfilled condition K}’ . at point ¢ € Q, if
exists element ®,(¢) € Az such that equation

lim (®(¢+ 6h) —®(C)) 67! = hd, 3
i (B(C+6h) — 2(C)) ©) (3)
is fulfilled for three vectors h: hi,hs and hs =1 or hg = —I, which are the basis of space FEj.

Theorem 2. Let the domain 2 C Es3 is convex in direction of straight line L, function ® : Q — Ag
is continuous in ) and fulfill condz’tionKI’%’;’E3 i all points ¢ € 0, except not more than countable
set. Then:

1) function ® is monogenic in domain §2;

2) function ® extends to function monogenic in domain I1. This extension is unique and given
by equality

8(0) = 5 [ (Fo(©) + Filedo + ) 2?) (€~ ¢) V. (1

21
¥

for all ¢ € 11;
3) monogenic extension (4) of function ® is differentiable in the sense of Lorch [10] in II.
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Onto the some dynamic applications via quaternions
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Quaternion algebra, which generate the complex numbers in four dimensions, is one of the sig-
nificant tools for not only mathematics but also physical applications [1, 2]. Quaternionic represen-
tations can be used some subfields of physics such as classical mechanics [3, 4], quantum mechanics
[5], electromagnetism [6], linear gravity [7, 8], plasma [9] and fluid systems [10] etc. In this work,
the quaternions with real coefficients and their some properties have been defined. By this way,
the quaternionic descriptions of the rotation, translation and both two motions of the rigid body
have been written in a detail manner and the applicable examples have been given. Then, the force
and torque terms on the object have been presented and exemplified by using quaternion concept.
Moreover, the manual operations have also been verified with the help of computer programs such
as Mathematica and Matlab [11, 12]. As a consequence, it is said that the quaternion algebra is the
important and practical mathematical structures for applicable sciences.
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On dynamical systems with a prescribed globally bp-attracting set
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Given an arbitrary fixed nonempty closed subset C C R™, we propose an explicit method to
construct a dynamical system which admits the regular part of C as globally bp-attracting set, i.e.
a closed and invariant set which attracts every bounded positive orbit of the dynamical system. We
apply this result in order to provide an explicit method of leafwise asymptotic bp-stabilization of
the regular part of an a-priori given invariant set of a conservative system. The theoretical results
are illustrated for the completely integrable case of the Rossler dynamical system.
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On certain fractal-based estimations of subsidence volume
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In [1, 2], the particle size distribution Ng(L > ds) was defined as the number of particles being
of any size L larger than ds, where ds; runs over the real numbers. In the same way we can
introduce the particle size distribution by volume Vi(L > ds) (and by mass My(L > d.)) as the
volume (mass) of particles being of any size L larger than ds, where ds runs over the real numbers.
Certainly, Ng(L > ds), Vs(L > ds) and M(L > ds) are real functions. The particle size distribution
Ng(L > dy) has fractal dimension Dy if

Ny(L > dy) = vds P,

where v is a constant coefficient.

Under some additional conditions of fractal nature of the loess soil and developing methods
introduced in [3, 4, 5] we obtained certain predictive estimations of the coefficient of porosity after
the disintegration of micro-aggregates. In this note we obtain some estimations of soil subsidence
volume, based on the introduced above fractal dimension.

The particles forming the ground may have only a finite set of sizes. We denote these sizes
di,dy, ...,dn—1,dy ranging in decreasing order from the largest. We assume that o = a; = d;;/d;_1,
where 2 < j < n, does not depend on j. This assumption corresponds to the idea of the self-
similarity of fractal structures. In addition, all known mathematical fractals are constructed on
this principle. As the structures formed by particles of a fixed size are self-similar, we also assume
that all these structures have the same coefficient of porosity k, as well as the same porosity
K, =k,/(1+k,). We discovered that under such conditions two different situations may occurred.
Let k' be the coefficient of porosity and K’ be the porosity of the soil after the disintegration of
micro-aggregates.

Theorem 1. In the above denotations we have : .
1. if Kp > o3 P then k' = Utk)@® P 1) gpg K7 = 1 o Do) o1

i T THR) @ D)
_3-Ds .
2. if K, < P Ps then K = 5020 0) (5.18) and K = kp(1—a”"7s)

1—(a3=Ds)™ T kp(l—a3—Ds)41— (a3 Ds)" -

The details of our experiments and techniques are described in [4].
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Modular knots obey the Chebotarev law
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A Chebotarev link in S® is an analogue of the set of all prime numbers in Z. It would play an
important roll in arithmetic topology, especially when we formulate an analogue of the idelic class
field theory for 3-manifolds [Uek21a] (see also [Mor12, Niil4, NU19, Mih19]|). Here is the definition:

Definition 1 (The Chebotarev law). Let (K;); = (Kj)ien., be a sequence of disjoint knots in a
3-manifold M. For each n € Ny and j > n, put L, = Uj<, K; and let [[;] denote the conjugacy
class of K; in m (M — Ly,). We say that (K;); obeys the Chebotarev law if the density equality

L #n<i<vla(K)=0) _#C

im = —

V—00 1% #G
holds for any n € N5, any surjective homomorphism p : 71 (M — L,,) — G to any finite group, and
any conjugacy class C C G.

In order to answer Mazur’s question on the existence of such a link in S? [Maz12], by using
Parry—Pollicott’s zeta functions of symbolic dynamics [PP90], McMullen proved a highly interesting
theorem:

Proposition 2 ([McM13, Theorem 1.2]). Let (K;); be the closed orbits of any topologically mizing
pseudo-Anosov flow on a closed 3-manifold M, ordered by length in a generic metric. Then (K;);
obeys the Chebotarev law.

Applying his theorem to the monodromy suspension flow of the figure-eight knot K and noting
that the Chebotarev law persists under Dehn surgeries, he constructed a Chebotarev link containing
K in S3 [McM13, Corollary 1.3]. We refine his construction in two ways to verify the following
assertion:

Theorem 3 ([Uek21b, Theorem 3]). Let L be a fibered hyperbolic link in S* and let (K;); denote
the sequence of knots consisting of the closed orbits of the suspension flow of the monodromy map
and L itself. Then (K;); obeys the Chebotarev law, if ordered by length with respect to a generic
metric.

The union £ = U, I; is a stably Chebotarev link, that is, for any finite branched cover h : M — S°
branched along any finite link in L, the inverse image h=(L) is again Chebotarev.

One way is to extend McMullen’s theorem for generalized pseudo-Anosov flows, which allow 1-
pronged singular orbits. The other is to invoke the notion of rational Fried surgeries, which produce
many (generalized) pseudo-Anosov flows.

Our refinement further provides a new example called modular knots, that are also known as
Lorenz knots. Let H? = {z € C | Imz > 0} denote the upper half plane. The unit tangent bundle
of the modular orbifold PSL2Z \ H? is well-known to be homeomorphic to both the quotient space
PSLoZ \ PSLoR 2= SLoZ \ SLoR and the exterior of a trefoil K in S3. A flow on PSLyZ \ PSLyR
historically called the geodesic flow is defined by multiplying (EJ 69,5) on the right, and its closed
orbits are called modular knots. For each primitive hyperbolic element v in SLsZ, we may define
the corresponding modular knot C, by C,(t) = Mﬁ,(eot 69t) (0 <0 < logé&,), where MW’IVM =

& 0
(o &
Pinsky’s nice compactification [BP20], we obtain the following:
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Theorem 4 (|Uek21b, Theorem 4|). Modular knots and the missing trefoil in S* obey the Chebotarev
law, if ordered by length in a generic metric.

As a corollary, we obtain a result on a function with arithmetic origin. The discriminant function
o0

A(z) =¢q H(l — ") with ¢ = €*™~12 z € H? is a well-known modular function of weight 12.
1

The Dedeki:nd symbol ® and the Rademacher symbol ¥ are the functions SLoZ — Z satisfying

_ 2 T i
log A(vz) —log A(z) = { (2371:2%{)((7;02 A7)+ 2mie(y) g 2 i 8:

U(y) = @(y) — 3sgn(c(a + d))
for any v = (f:” 3) € SLsZ acting on z € C via the Mobius transformation vz = ZZZIZ Here we take
a branch of the logarithm so that —7 < Imlogz < 7 holds. This ¥ factors through the conjugacy
classes of PSLoZ and satisfies W(y~1) = —¥(vy) for any ~.

The Rademacher symbol W is known to be a highly ubiquitous function. Indeed, Atiyah proved
the equivalence of seven definitions rising from very distinct contexts [Ati87|, whereas Ghys gave
further characterizations ([BG92|, [Ghy07, Sections 3.3-3.5], [DIT17, Appendix|), proving that for
each primitive hyperbolic -y € SLoZ, the linking number between the modular knot C and the missing
trefoil K coincides with the Rademacher symbol, namely,

k(Cy, ) = ¥ (y)

holds. Theorem 4 for p(y) = lk(Cy, K) mod m together with some arguments yield the following.

Corollary 5 ([Uek21b, Corollary 9]). Suppose that ~y runs through primitive hyperbolic elements of
SLoZ. For any m € Z~q and k € Z/mZ, we have

i | <v, U(y) =k in Z/mZ} 1
v—00 #{v | [try| < v} m’

The similar arguments may be applicable to other Fuchsian groups. Modular knots for triangle
groups around any torus knot in S% will be finely studied in [MU21].
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The Collatz conjecture is an open problem in number theory stablished in 1937 by Lothar Collatz
and can be stated as follows: If f: N — N is the function define by:

n

z in is even
fn) = { 3n2—|—1 i 1S odd

the conjecture says that given n € N, there exists k > 0 such that f*)(n) = 1 and the only orbit
is {1,2,4}

In 2019, Terence Tao showed, in the context of the Collatz conjecture, that almost all n € N
belong to the set W = {n € N : min(O(n)) < f(n)}. In this paper we prove that the Collatz
conjecture is true if and only if the set W is connected in N with the primal topology 77, where 7¢
is the topology on N given by the open sets as those subset @ of N such that f~1(9) C 6.
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Conformal mappings in Hardy-type spaces
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Let HP(CL),1 < p < 400, [1] be the Hardy space of analytic in the half-plane C; = {z : ®z > 0}

functions, for which
1/p

—+o00
| £ ll=sup / flotiyPdy s < +oo.
x>0

Let Dy ={2:R2<0,[Sz| <o}, Di =C\ Dy, 0 > 0.

Definition 1. Let EP(D,) and EP(D}), 1 < p < 4+00,0 > 0, be the spaces of analytic functions in
the domains D, and D} respectively, for which

1/p

sup /|f(z)|p|dz| < +00,
gl

where supremum is taken over all segments v, that are contained in D, and D}, respectively.

We consider the properties of functions in the half-strip D, and in the exterior of half-strip D7.
In [2]| considered spaces EP(D,) and EP(D}) as spaces of signals. We propose a common point of
viev on EP(D,) and EP(D}).

Theorem 2. Function f belongs to E*(DZ) if and only if, when the function

201 ] ]
Fw)=f —w+ 22 cos o \/—1—|—sinw,
T 20 20

where /1 =1, belongs to E*(D,).

The proof of the theorem is based on the following lemma.

Lemma 3. Function

comformally maps Dy into D}.
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On the equivalency classes of weakly conjugated inner mappings
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A map is called inner mapping if it is open and isolated (the preimage of a point consists of
isolated points). Yuriy Trokhimchuk studied inner mappings a lot during his life and published a
book [5]. Topological properties of dynamical systems generated by inner mappings were studied in
[3].

the open question of topological dynamics of inner mappings of surfaces is whether there exists
a class of structurally stable inner mappings. Conjugacy with a homeomorphism as a topological
equivalence of inner mappings seems too strict to produce a structurally stable map. It is proven
in [1, 2] for Anosov endomorphisms. A paper [4] produced some examples even for the wandering
set. It seems that indeed there is no structurally stable inner mapping up to topological conjugacy.

In that case it seems reasonable to find another definition of the topological equivalence such that
it allows structural stability. Possible candidates are discussed.
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Extremal problem for non-overlapping domains with free poles
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Let N and R be the sets of natural and real numbers, respectively, C be the complex plane,
C = CJ{oo} be the Riemann sphere, and 7(B,a) be the inner radius of the domain B € C with
respect to the point a € B.

Consider the following problem which was formulated in 1994 [1].

Problem 1. Consider the product
In(’Y) BO7 Hr(BkHak

where By, Bi,...,By, (n > 2) are pairwise non-overlapping domains in C and ag = 0 and |ag| = 1 for
k=1,n,and 0 < v < n. Show that it attains its maximum at a configuration of domains By and
points ay possessing rotational n-symmetry.

This problem has a solution only if v < n as soon as v = n-+¢, e > 0, the problem has no solution.
Currently it still unsolved in general, only partial results are known [2].
The following theorem holds [3].

Theorem 2. Let n € N and n > 2. Then for any 3 € (0;3] there ewists no(B) such that for all
n = no(B) and for all v € (1, nﬁ] and for any different points of a unit circle and for any different
system of non-overlapping domains By, such that aj, € By, € C for k=1,n, and ag =0 € By C C,
the following inequality holds

n (4 _ VANV
moflrmas () E (25T

Equality is attained if ay, and By, for k = 0,n, are, respectively, poles and circular domains of the
quadratic differential

2 (n* = Nw" +~ 2
Q(w)dw” = md
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Inner harmonic measure for the fractional Laplacian
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The talk is based on [9], and it deals with the theory of potentials with respect to the a-Riesz
kernel |x — y|*™" of order a € (0,2] on R™, n > 3. We first focus on the inner a-harmonic measure
6;/4 for A C R™ arbitrary, being motivated by the known fact that it is the main tool in solving
the generalized Dirichlet problem for a-harmonic functions (see [1, 7]). Here €, is the unit Dirac
measure at y € R™, and p* the inner a-Riesz balayage of a Radon measure u to A C R” (see [8],
cf. also [4] where o = 2).

We describe the Euclidean support of the inner a-harmonic measure ayA, provide a formula for
evaluation of its total mass 5;/4 (R™), establish the vague continuity of the map y 5;!4 outside the
inner a-irregular points for A, and obtain necessary and sufficient conditions for e?‘;‘ to be of finite
energy (more generally, for sgj‘ to be absolutely continuous with respect to inner capacity) as well
as for sj(R”) = 1 to hold. Those criteria are given in terms of newly defined concepts of inner
a-thinness and inner a-ultrathinness of A at infinity (see [9]) that for @ = 2 and A Borel coincide
with the concepts of outer 2-thinness at infinity by Doob [5| and Brelot [2], respectively.

Further, we extend some of these results to u“* general by verifying the integral representation
formula for inner balayage:

pt = /Eﬁ dp(y)-

We also show that for every A C R”, there exists a K,-set Ag C A such that
p? = po for all g,

and give various applications of this theorem. In particular, we prove the vague and strong continuity
of the inner swept, resp. inner equilibrium, measure under an approximation of A arbitrary, thereby
strengthening Fuglede’s result [6], established for A Borel.

Being mainly new even for o = 2, the results obtained also present a further development of the
theory of inner Newtonian capacities and of inner Newtonian balayage, originated by Cartan |3, 4].
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My abTUILTIKATOPHU B IIPOCTOpPaX Xap/i Ta NOB’A3aHUX 3 HUMU
ITPOCTOPaX

Ilerpo 3axaepeii
(Harmionanbuuii Texuivnmii yuisepcurer Yrpaiau "Kuicbkuii mosirexuianmii incruryT iveni Irops
Cikopcwkoro”, npocnekt Ilepemorn, 37, Kuis)
E-mail: zadereypvQukr.net

Mukousa T'aeBcbKuii
(enrpanbHOYKpAIHCHK WL JIepKaBHUIL T1earoriunauii yaisepcurer iMeni Bosioimvupa
Bunnnuenka, Byi1. [Ilesuenka,l, KponusuunbKkuii)
E-mail: mgaevskijOgmail.com

Hexait m — nesxe narypasibae uuciao, C™ — MHOXKHWHA BHODSIKOBAHNX HAOOPIB KOMIIIEKCHIX
qncen z = (21,...,2m). depes D™ = {z € C™ : |z;| < 1,1 < j < m} nosuainmMo OIUHHIHUI
nomikpyr 3 kicrsakom T = {z € C™ : |z;| = 1,1 < j < m}. Yepes H(D"") mo3sHaunMo MHOKIHY
anagiTHIHUX B nOKpy3i D™ dyukmiit f, 11g 9KuX BUKOHYETHCS yYMOBA

2 2w
t -tnl
1Nl e (pmy = sup dtl.../ |f(rie™, oo rme™)|dty, < co.
0<r;<1,1<5<m J 0O 0
Bigmirumo, mo nupu m = 1 orpumaemo ssuuaiini oxnosumipni kiaacu Xapai Hi(D) i B npomy

BUIIAIKY BEpXHiil iHIEKC OyIeMO OIMyCKaTH.
Ba gomomororo nocaigosrocTi kKomiiekcaux uncesn A = {\;}, k € Z4 xoxmniit f € Hy(D™) 3
psom Teitnopa f(z) =Y 02 Fu(2). Fy(2) = > ¢ 2X mocrapmvo y BizmoBiHICTE hyHKIIIO
ki+...+kn=v
Af(z) =302 AvFy(2) Ta 03HQUATHMO HACTYIIHUM YHHOM MYJILTHILIIKATOD. [ToC/IiI0BHICTS KOMILTE-

KCHEX 9iCe/T A Ha3mBaeThCs MYIBTUILTIKATOPOM, 110 Jtie 3 Hy (D™) 8 Hy(D™), aximo || Af| g, (pm) <
M| fll £, (om)-

3 KJIaCHYHUME KJjacaMy Xap/i TicHO 1oB’s3ani mificui kiracu Xapai. Ilig gificaum kiaacom Xapmi
ReH, po3ymitoTs mpoctip dyukmniit F': R — R, mo € aificHUMHU 9aCTUHAMYU TPAHWUYHUX 3HAYEHD
byuxuiit f € Hi(D) F(t) = lirri Ref(re®).

r—

Hiticamit kmac Xap/i € 6anaxorum mpoctopoM 3 HOpMOIO || Flger, = |Fllz, + |1 FllL,, 1e F —
2m
dyukiia cupszkena 10 £, Ly — upocrip cymoprux dynkuiit 3 nopmow ||Fz, = [ |F(z)|dz.
0

Awnagoriuno, nocaigopricts A = { A}, k € Z4 HasuBaeThcs Mysbruiiikaropom 3 ReH; B ReHy,
gximo aus F € ReHy 3 pagom @yp'e F(x) ~ 92 4+ 3707 ay cos kt + by sinkt pag AF(x) ~ % +
Y Me(ag coskt + by sinkt) € pagom Dyp'e mesikol byukuil AF € ReHp, 10610 ||AF||perr, <
M| F|| e, -

Teopema 1. Jlaa mozo wob nocaidosnicmv komnaexcnuz wucea N = {Ag} 6yaa mysvmunaira-
mopom 3 npocmopy Hi(D) ¢ Hy(D), neobxiono i docmamnvo, wob ichyeara maka nocaidoeHicmoy

ur € C maxa, wo sup fOQW ‘ Sho e R 3T ,uke““t‘dt < 00
n

Teopema 2. Jlas mozo wob nocaidosuicms xomnaexchux wucea A = {\r} 6yaa myasvmunaikamo-
pom 3 npocmopy Hi(D™) ¢ Hi(D™), neobxiono i docmammuvo, wob icnyeana maxa nocaidoeHicmo

wi € C, wo sup f()% ‘ Sho ke RS ,ukeikt‘dt < 00.
n
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Teopema 3. [las mozo wob nocaidosnicmov ditichuz wucea A = {A\g} 6yaa myavmunaixamopom
3 mpocmopy ReHi 6 ReH1, neobxidno 1 docmamuvo, uob ichysas maxutl poskasad A\ = o + P,

ag, Br € R, wo sup fo% ‘ Y r_o Qg cos kx + [y sin kx‘dw < 00
n
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IIpo mesiki 3aKOHOMIPHOCTI KBa3i-reoge3nvYHNX BigoOparkeHb
y3araJibHEHO-PEKYPEHTHUX MPOCTOPIB
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Hexait yzarambHeno-pexypenTanii mpoctip mapabosiamoro tuty [3] (Vi, gij, ') nonyckae merpu-
BiasbHe KBasi-reosiesmane Biobpaskenns [1] ma neespopivanosuit mpoctip (Vp, g;;). Tomi & cywiciit
3a BiOGparkeHHSIM CHCTeMI KOOPIMHAT (Z') BUKOHYIOThCSI OCHOBHI DiBHSIHHS [3]

flh] () = F?j (z) + w(i(l‘)éﬁ) + ¢(l($)FJh)(a:)

o4 nl nl — a
Fij = —Fj, Fj=giFj, Fij=-Fj, Fij=0g.F,
h o
F FY=0
h  _ ph,
Fog) = Fad)
Tyr - 3HAK KOBapiaHTHOI MOXigHOI BimHOCHO 3B’a3H0CTI [' B V,.
PosrigryTo BUMa 0K, KON y3araJbHEHO-PEKYPEHTHUI TPOCTIP MapaboiTHOr0 THITY 3 IHTEerPOB-
HoI0 adinoproio cTpykTypoio (V,, gij, Fih) JIOTIyCKa€ KBazi-TeoIe3nvHe BiToOpakeHHd 3i 30eperKeH-

” N
7

HAM BEKTOpa y3araibHeroi pexypenTrocTi [3], omxe B mpocTopi (Vp, g;;) A1a adinopa F} suxony-
IOTHCSI CIIBBITHOIITCHHST

Fip) = Fiay,
7|7 - 3HAK KOBapiaHTHOI MOXITHOI BITHOCHO 3B’SI3HOCTI TsV,.

SayBakumo, 1m0 00pa3 y3arajabHEHO-DEKYPEHTHOI'O MPOCTOPY NMPU KBazi-reo1e3maHoMy BimoOpa-
JKeHHI HEeOOXITHO Oyjie TaKOXK y3araJbHEHO-PEKYDEHTHIM MPOCTOPOM (3], asre 36eperkeHHsT BEKTOpa
y3arajbHEHO! PEKYPEeHTHOCTI IPHU IOMY HE € HEeOOXiTHUM.

3a Takmx yMOB OTpUMaHO HOBY (OpPMY OCHOBHHX DIBHSIHB [2] KBa3i-reofie3mvHux BimoGparkeHb
y3arajbHEHO-PEKYPEHTHUX MPOCTOPIB Mapabo/ivHOr0 THUILY, KA J0IMycKae eheKTUBHE JOCTIIKEHHS.

TTobymoBaro TepeTBOPEHHS, SKE Ja€ 3MOTY i3 Mapu y3araJbHEHO-PEKYPEHTHUX TPOCTOPIB, IO
BHAXOAATHCST B KBa3i-TeOIE3UTHOMY BimoOparkeHHI 31 30epeKeHHsIM BEKTOpa y3araJbHEHOI peKy-
PEHTHOCT], OTPUMATH HOBY Hapy y3araJbHEHO-PEKYPEHTHUX TPOCTOPIB, 110 TAKOXK 3HAXOJATHCH B
KBa3i-re0Ie3NTHOMY BiTOOpayKeHH.

e
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PaccMOTpHM PUMAHOBO IPOCTPAHCTBO Vj,, OTHECEHHOE K HPOU3BOIBLHON CHCTeMe KOOpAHHAT .

B oxkpectHOCTH TTPOU3BOIBLHON (DPUKCUPOBAHHON TOUKN Mo(x’(}) CTPOUM TIPOCTPAHCTBO VnQ, KOTOPOE
peasu3yer npubJIZKEeHIe BTOPOro MOPsIKa JJIst Vi, ¢ MeTpudecKuM TeHzopoM Gi;(y) [1]:

- 1
9ii(y) = gij + gRiaﬁjyayﬁ’ (1)
° o
riue
9ij = 9i5(Mo), Riapj = Riagj(Mo)-
]
JL1st mccnenoBaHns Te0Ie3NIEeCKUX OTOOPaKeHNH MPOCTPAHCTBA ‘7,? OCHOBHbIE YpaBHEHUS
H.C. Cunrokosa [2] )
Viaij = AiGj)k
nViAi = [igik + Goi 1 — ap Ry, (2)
(n — 1)Viji = 2(n + 1)ARY + a,(2VaRY — Vi RS)
npeacTaB/JI€Hbl B 9KBUBAJIEHTHOM BUJIC

~ 8&;* ~ QT ~ QT N =
giaw + a5 laki — @' Ujk.a = A\iGjk

OX* | Sar o ap _ aph
n Tyz ai + A Laji | = [gij + a; Raj — agdt ;g (3)
(n — 1)Vt = 2(n + 1)A* Rax + a5 (2VaRy; — Vi RS)
Uccnenyst ypasuenust (3), kommonent rensopa G;;(y) = giad§, BeKTOpa A\i = A%goi u PyHK-

1y fi(y) mosIydenbl B BUJIE CTEHEHHBIX PsijIoB, KOIMMOUIMEHTH KOTOPBIX ONPEEIeHbl 3HAYCHUIMU
00bEKTOB TTPOCTPAHCTBA V,, B Touke M. N3ydyaercss BOIpOC CXOAMMOCTH TIOJIYUYEHHBIX PSIO0B.
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