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Finitely bi-Lipschitz homeomorphisms between Finsler manifolds

Elena Afanas'eva
(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, 1 Dobrovol'skogo St.,

Slavyansk 84100, Ukraine)
E-mail: es.afanasjeva@gmail.com

In this talk we investigate the boundary behavior of �nitely bi-Lipschitz homeomorphisms between
Finsler manifolds. Our study involves the module technique and classes of mappings whose moduli of
the curve/surface families are integrally controlled from above and below. The Lusin (N)-property
with respect to the k-dimensional Hausdor� measure for the �nitely bi-Lipschitz mappings is also
established. The talk is based on a joint work with A. Golberg; see [1].

Let M be an n-dimensional di�erentiable manifold, n ≥ 2. By the di�erentiability we mean C∞�
di�erentiability. For a point x ∈ M, TxM denotes the tangent space at x, and TM := ∪x∈MTxM
is the tangent bundle. The Finsler manifold is a di�erentiable manifold M equipped the Finsler
metric Φ(x, ξ) : TM→ R+ satisfying the conditions:
(i) regularity: Φ ∈ C∞ on TM0 := TM \ {0};
(ii) positive homogeneity: Φ is positive homogeneous that is Φ(x, aξ) = aΦ(x, ξ) for all positive

a ∈ R and Φ(x, ξ) > 0 for ξ 6= 0;

(iii) the Legendre condition or strong convexity condition: gij(x, ξ) = 1
2
∂2Φ2(x,ξ)
∂ξi∂ξj

is positive de�nite

whenever ξ 6= 0.

Following [3], an element of volume on the Finsler manifold is de�ned by dσΦ(x) := |Bn|
|Bnx | dx

1...dxn,

where |Bn| denotes the Euclidean volume of the unit n-ball whereas |Bn
x | is the Euclidean volume

of the set Bn
x =

{
(ξ1, ..., ξn) ∈ Rn : Φ

(
x,

n∑
1

(ξi, ei(x))

)
< 1

}
with an arbitrary basis {ei(x)}ni=1 in

Rn depending on x.
Suppose that D and D′ are two domains on M and M′, respectively, f : D → D′ is a continuous

mapping. Let L(x, f) = lim supy→x
dΦ′ (f(x),f(y))

dΦ(x,y) , x ∈ D and l(x, f) = lim infy→x
dΦ′ (f(x),f(y))

dΦ(x,y) .

Following [2], we say that f : D → D′ is �nitely Lipschitz if L(x, f) <∞ for all x ∈ D and �nitely
bi-Lipschitz if

0 < l(x, f) ≤ L(x, f) <∞
for all x ∈ D.
A Borel function ρ : M→ [0,∞] is called admissible for the family Γ of k-dimensional surfaces S

in M, k = 1, . . . , n− 1, (abbr. ρ ∈ adm Γ), if
∫

S

ρk dAΦ ≥ 1, ∀ S ∈ Γ. (1)

Following [2], the function ρ : M→ [0,∞] measurable with respect to the measure of a volume σΦ is
called extensively admissible for a family Γ of k-dimensional surfaces S in M (abbr. ρ ∈ ext adm Γ),
if the admissibility condition (1) holds for almost all (a.a.) S ∈ Γ.
The conformal module ormodule (called also the conformal modulus) of a family Γ of k-dimensional

surfaces in D is de�ned by

M(Γ) := inf
ρ∈adm Γ

∫

D

ρn(x) dσΦ(x),

where D is a domain in M.
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Let Q : M → (0,∞) be a measurable function. A homeomorphism f : D → D′ is called lower
Q-homeomorphism at a point x0 ∈ D, if there exists δ0 ∈ (0, d(x0)), d(x0) := sup

x∈D
dΦ(x, x0), such

that for any ε0 < δ0 and any geodesic rings Aε = A(x0, ε, ε0) = {x ∈ M : ε < dΦ(x, x0) < ε0},
ε ∈ (0, ε0), the inequality

M(f(Σε)) ≥ inf
ρ∈ext adm Σε

∫

D∩Aε

ρn(x)

Q(x)
dσΦ(x) (2)

holds. Here Σε stands for the family of all intersections of the geodesic spheres S(x0, r) = {x ∈M :
dΦ(x, x0) = r}, r ∈ (ε, ε0), with the domain D. We say that the homeomorphism f : D → D′ is a
lower Q-homeomorphism in D, if f is lower Q-homeomorphism at every point x0 ∈ D.
For sets A,B and C, we denote by ∆(A,B;C) the set of all curves γ : [a, b] → M, which join A

and B in C, i.e. γ(a) ∈ A, γ(b) ∈ B and γ(t) ∈ C for all t ∈ (a, b).
Let Q : M → (0,∞) be a measurable function. We say that a homeomorphism f : D → D′ is

ring Q-homeomorphism at a point x0 ∈ D, if

M
(
∆(f(K), f(K0);D′)

)
≤

∫

D∩Aε

Q(x) · ηn (dΦ(x, x0)) dσΦ(x) (3)

holds for any geodesic ring Aε = A(x0, ε, ε0), 0 < ε < ε0 <∞, any two continua (compact connected

sets) K ⊂ B(x0, ε) ∩D and K0 ⊂ D \ B(x0, ε0) and each Borel function η : (ε, ε0) → [0,∞], such

that
ε0∫
ε
η(r)dr = 1. We say that f is a ring Q-homeomorphism in D, if (3) holds for all points

x0 ∈ D.
Recall that a metric space M is called hyperconvex if ∩α∈ΛB(xα, rα) 6= ∅ for any collection of

points {xα}α∈Λ in M and positive numbers {rα}α∈Λ such that d(xα, xβ) ≤ rα + rβ for any α and β
in Λ.

The main result of talk is following

Theorem 1. ([1]) Let D and D′ be two domains in Finsler n-dimensional manifolds (M,Φ) and
(M′,Φ′), respectively, n ≥ 2, and let M′ be a hyperconvex space. If f : D → D′ is a �nitely bi-

Lipschitz homeomorphism then f is both lower Q-homeomorphism with Q = K
1

n−1

I (x, f) and ring
Q∗-homeomorphism with Q∗ = C ·KI(x, f), where KI(x, f) ∈ L1

loc stands for the inner dilatation
of mapping f , and C is a constant arbitrarily close to 1.
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About longest and shortest chords passing through a �xed point

Aliyev Yagub
(ADA University, Ahmadbey Aghaoglu str. 61 Baku, 1008)

E-mail: yaliyev@ada.edu.az

A new method to construct a tangent to the conchoid of Nicomedes or lima�con of Pascal curves
is discussed. Some interesting properties of the cardioid curve (which is a special case of lima�con of
Pascal) are investigated. The following problem is studied: �Given a line k and two points A and
B on one side of k, �nd point C such that the sum of lengths of segments CD and CE is minimal,
where D and E are intersections of line k with lines CA and CB, respectively�. This problem is
dual to the classic problem to �nd shortest segment inscribed to a given angle and passing through a
given point. Part of this problem was solved and the remaining part is left as an open question. The
problem to �nd ellipse's longest or shortest chord passing through a given point, is also considered.
For the solution the curve named as ophiuride is used.
The following Lemma is used.

Lemma 1. Let c1 and c2 be two arbitrary smooth curves. Let O be a given point and let a line
through this point intersect the curves c1 and c2 at points A and B. If the length of segment AB is
maximal/minimal or constant and the tangents to the curves c1 and c2 at points A and B are not
perpendicular or parallel to the line AB then these tangents intersect at a point C such that for the
perpendicular CD of the line AB the equality |OA| = |BD| holds true.

References

[1] Anghel N., On the constructability with ruler and compass of a minimum chord in a parabola, Libertas Math. 17,
9-12 (1997).

[2] Anghel N., Geometric loci associated to certain minimal chords in convex regions, J. Geom. 66, No.1-2, 1-16
(1999).
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5



Some equivariant properties of Milnor's construction

Sergey Antonyan
(National University of Mexico, Ciudad Universitaria, Mexico City)

E-mail: antonyan@unam.mx

In 1953 John Milnor, for a topological group G, introduced the notion of an in�nite join EG =
G∗G∗ . . . . This space possesses a natural action of the group G under which it becomes a universal
principal G-�bration. The orbit space BG = EG/G is well known as a classifying space. In this
talk I will present a more transparent approach to constructing of EG that will allow us to show
that the natural action Gy EG is proper in the sense of R. Palais whenever G is a locally compact
group. As a result we obtain some new equivariant properties of this classic space. Similar research

is carried out for the complete in�nite join ẼG (which is the completion of EG with respect to a
suitable metric) introduced in 1992 by T. Banakh.
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Commuting sets for topological set operators

Kateryna Antoshyna
(National University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv, 04070, Ukraine)

E-mail: akaterink@ukr.net

Sergiy Kozerenko
(National University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv, 04070, Ukraine)

E-mail: kozerenkosergiy@ukr.net

Let X be a set and F,G : 2X → 2X be two set operators on X. We say that a set A ⊂ X is
commuting set for the pair F,G if F (G(A)) = G(F (A)).
For a topological space X commuting sets for the pair of set operators Cl, Int were characterized

by Levine [2] as symmetric di�erences of clopen sets with nowhere dense sets. Similarly, Staley [3]
obtained a criterion for commuting sets for the pair Int, ∂ (here ∂ denotes the topological boundary
operator).
In this work we consider the following six set operators on a topological space: Cl, Int, ∂, Ext

(the exterior of a set), ∗ and +: A∗ = A\IntA, A+ = ClA\A (these two operators were explicitly
de�ned and studied by Elez and Papaz [1]). It is possible to obtain characterizations of commuting
sets for each pair of these six operators. As an application of these characterizations we present
new criteria for the following well-known classes of topological spaces:

• nodec: a space in which every nowhere dense set is closed;
• extremally disconnected : a space in which the closure of every open set is also open;
• strongly irresolvable: a space in which each open subspace is irresolvable (i.e. it cannot be
expressed as a disjoint union of two dense sets);
• perfectly disconnected : a T0-space in which any pair of disjoint subsets have no common
limit points.

Theorem 1. Let B be a clopen set and C be a nowhere dense set. Then the symmetric di�erence
B4C is a commuting set for the pair Cl, ∗ if and only if B ∩ C is closed.

Corollary 2. A space is nodec if and only if any commuting set for the pair Cl, Int is also a
commuting set for the pair Cl, ∗.
Proposition 3. Let X be a space. Then:

(1) X is extremally disconnected if and only if any open set is a commuting set for the pair
Cl, Int;

(2) X is strongly irresolvable if and only if any nowhere dense set is a commuting set for the
pair Cl, Int.

Corollary 4. A space is extremally disconnected and strongly irresolvable if and only if any set is
a commuting set for the pair Cl, Int.

Proposition 5. A space is perfectly disconnected if and only if any set is a commuting set for the
pair Cl, ∗.

References
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Asymptotic analysis of quasi-regular mappings in space

Boris N. Apanasov
(Univ of Oklahoma, Math Dept, Norman, OK 73019, USA)

E-mail: apanasov@ou.edu

Dedicated to the memory of Yuri Yu. Trokhymchuk
We investigate quasisymmetric embeddings of a closed 3-ball inextensible in neighborhoods of any

boundary points and bounded quasiregular locally homeomorphic mappings in 3-space, especially
their behavior in the unit 3-ball and their asymptotics while approaching the boundary of the unit
3-ball(cf. [12], [14], [7], [16], [17]).
We discover several new properties of such mappings in 3-space. Such discoveries are based on

our construction of a new type of bounded locally homeomorphic quasiregular mappings in 3-sphere
(and in the unit 3-ball)- see [6]. It addresses long standing problems for such mappings, including
M.A.Lavrentiev problem, Pierre Fatou problem and Matti Vuorinen injectivity and asymptotics
problems (cf. [7]). The construction of such mappings comes from our construction of non-trivial
compact 4-dimensional cobordisms M with symmetric boundary components and whose interiors
have complete 4-dimensional real hyperbolic structures (cf. [4]). Such bounded locally homeomor-
phic quasiregular mappings are de�ned in the unit 3-ball B3 ⊂ R3 as mappings equivariant with the
standard conformal action of uniform hyperbolic lattices Γ ⊂ IsomH3 in the unit 3-ball and with its
discrete representation G = ρ(Γ) ⊂ IsomH4 (cf. [6]). Here G is the fundamental group of our non-
trivial hyperbolic 4-cobordism M = (H4 ∪ Ω(G))/G and the kernel of the discrete representation
ρ :Γ→ G acould be a free group Fm on arbitrary large number m generators.
Such discrete non-faithful representations of hyperbolic lattices with arbitrarily large kernel were

known only for non-uniform case due to the W.Thurston's non-rigidity theorem (Dehn surgeries
on cusp ends of non-compact hyperbolic 3-manifolds). We are able to present our construction for
uniform (co-compact) hyperbolic 3-lattices based on a new e�ect in the theory of deformations of
hyperbolic 3-manifolds/orbifolds or their uniform hyperbolic lattices Γ ⊂ IsomH3 (i.e. in the Te-
ichm�uller spaces of conformally �at structures on closed hyperbolic 3-manifolds -cf. [1, 2]). We show
that such Teichm�uller space or the corresponding variety of conjugacy classes of discrete represen-
tations ρ :Γ→ IsomH4 may have connected components whose dimensions di�er by arbitrary large
numbers -cf. [3, 5]. This is based on our enhancement to the conformal category of the Gromov-
Piatetski-Shapiro interbreeding construction [13] and our construction of non-trivial "symmetric
hyperbolic 4-cobordisms" [8].
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Generalized (σ, τ)-derivations on associative rings satisfying certain
identities

Mehsin Jabel Atteya
(Department of Mathematics, College of Education, Al-Mustansiriyah University, Baghdad, Iraq)

E-mail: mehsinatteya88@gmail.com

The commutativity of associative rings with derivations have become one of the focus points of
several authors and a signi�cant work has been done in this direction during the last two decades.
It represents the answer to the natural questions of Ring Theory which reach to determine the
conditions implying commutativity of the ring. Basically, the study of derivation was initiated
during the 1950s and 1960s. Derivations of rings got a tremendous development in 1957, when
Posner [1] established two very striking results in the case of prime rings. A considerable amount
of work has been done on derivations and related maps during the last decades (see, e.g., [2,3 and
4] and references therein).The main purpose of this paper is present results concerning generalized
(σ, τ)-derivations via associative rings. Accurately, we prove the commutativity with other cases of
a ring that satis�ed certain conditions. These results are in the sprite of the well-known theorem
of the commutativity of prime and semiprime rings with generalized derivation satisfying certain
polynomial constraints. Throughout this paper, R always represents an associative ring and Z(R)
is its center. Let σ and τ be two mappings from R to itself. For any x, y ∈ R we write [x, y](σ,τ) for
the commutator xσ(y)− τ(y)x and (x ◦ y)(σ,τ) for anti-commutator xσ(y) + τ(y)x.
Recall that R is semiprime if aRa = 0 implies a = 0 and R is prime if aRb = 0 implies a = 0
or b = 0. Every prime ring is semiprime ring but the converse is not true always. An additive
mapping d : R −→ R is said to be an (σ, τ)-derivation of R if d(xy) = d(x)σ(y) + τ(x)d(y) holds
for x, y ∈ R. Let σ and τ be endomorphisms of R. An additive mapping D : R −→ R is said to be
a generalized (σ, τ)-derivation of R if there exists an (σ, τ)-derivation d : R −→ R of R such that
D(xy) = D(x)σ(y) + τ(x)d(y) for all x, y ∈ R.
Theorem 1. Let R be a non-zero semiprime ring with nonzero commutator, σ and τ be auto-
morphsim mappings. If R admits a generalized (σ, τ)-derivation sati�ses the identity D(x)oy =
D(xy) for all x, y ∈ R, then D = 0.

Theorem 2. Let R be a 2-torsion free semiprime ring with nonzero commutator, σ and τ be
automorphsim mappings. If R admits a generalized (σ, τ)-derivation satis�es the identity D(xoy) =
D(x)oy −D(y)ox for all x, y ∈ R, then d = 0.
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The Tucker HO-SVD and the anisotropy of Finslerian geometric
models

Vladimir Balan
(University Politehnica of Bucharest, Faculty of Applied Sciences, Department

Mathematics-Informatics, Splaiul Independentei 313, RO-060042, Bucharest, Romania)
E-mail: vladimir.balan@upb.ro

The tensor spectral theory, as an extension of the classic spectral theory of linear operators reached
sound applications in Big Data and Image Processing, based on the main decomposition tools of
Tucker type, originating in the cornerstone HO-SVD decomposition [7, 8]. This theory enhances the
statistical analysis in various �elds, originally including MRI-imaging, Special Relativity, ecology,
and HARDI biology. The present talk provides a brief survey of results recent tensor spectral
theory, and of its applications to geometric structures which rely on anisotropic metrics of Finsler
type. Several models are addressed, for which we derive the Tucker type HO-SVD decomposition
and the induced powerful approximation provides aids for identifying main geometric features, and
consistent anisotropy estimates for the Finslerian structures.
We include the mth candidate models for Special Relativity (Pavlov-Chernov, Bogoslovsky, and

Roxbourgh models), for ecology (P.L. Antonelli &al.), HARDI biology (L. Astola & al.), Garner
oncology and the physics of Langmuir-Blodgett monolayers.

We also present a brief survey of results from the spectral theory of covariant main symmetric
tensors which rely on the fundamental tensor �elds of the anisotropic geometric models. We note
that the spectral data describe properties of the indicatrices associated to the Finsler norms, point
out their asymptotic properties, and allow to derive best rank-I approximations - which provide
simpler consistent estimates for the original anisotropic structures. We investigate the spectral
data of covariant symmetric tensor �elds, and focus on the metric and Cartan �elds of the Finsler
structures - including the Euclidean and Riemannian subcases - and further provide and discuss
natural alternatives of the spectral equations.

We consider n−dimensional Finsler structures (M,F ) with the main axioms relaxed by either
dropping the positivity condition, or reducing the domain, and replacing the positive-de�niteness
of the Finsler metric d-tensor �eld with the non-degeneracy and constant signature condition. We

shall denote by gij = 1
2
∂2F 2

∂yi∂yj
and Cijk = 1

4
∂3F 2

∂yi∂yj∂yk
the components of the metric and Cartan

d-tensor �elds, respectively. One of the important features of the Cartan tensor is that its vanishing
makes g quadratic in y, and consequently the Finsler space becomes Riemannian (correspondingly,
pseudo-Finsler spaces become, in such case, pseudo-Riemannian).

For a real m-covariant symmetric tensor �eld T on the �at manifold V = Rn endowed with the
Euclidean metric g, we say that a real λ is a Z-eigenvalue and that a vector y is an Z-eigenvector
associated to λ, if they satisfy the system:

T.ym−1 = λ · y, g(y, y) = 1, where T.ym−1 =
∑

i,i2,...,im∈1,n

Ti,i2...imyi2 ·...·yimdx
i,

where by lower dot is repeated transvection and the power is tensorial. As well, an alternative
for spectral objects is the H-eigenvalue λ and its H-eigenvector, described by the homogeneous
polynomial system: (T.ym−1)k = λ(yk)m−1. Regarding the spectra consistency, it is known that in
the Euclidean subcase, the Z- and the H-spectra are nonempty for even symmetric tensors, and
that a symmetric tensor T is positive defynite/semi-de�nite i� all its H− (or Z−) eigenvalues are
positive/non-negative.
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Among the applications of the spectral Finsler approach, there was observed the relevance of
eigendata of the metric and Cartan tensors of the Langmuir-Finsler structure [1, 5, 9] within the
physics of monolayers which studies the interphase boundary of a mono-molecular system.

For the Langmuir model, the Cartan tensor

C = Cijk(x, y∗)dx
i ⊗ dxj ⊗ dxk, Cijk(x, y) =

1

4

∂3F 2

∂yi∂yj∂yk
, (1)

considered at the �xed supporting element (x, y∗) ∈ T̃M , has the 1-mode provided by the slices

C = (C1ij = γ ·M, C2ij = ν ·M, C3ij = O3×3),

where γ = 3A
β3 , ν = −α

β γ, y∗ = (α, β, γ) ∈ TxM is the supporting element, and M =

(
β2 −αβ 0
−αβ α2 0

0 0 0

)
.

Theorem 1. Consider the Cartan tensor of the Cartan-Langmuir tensor (1) from above. Then the
associated spectral data are given as follows

a) The Z-eigendata are given by:

Sλ1=0 =

{
1√

α2 + β2 + t2
(α, β, t)

∣∣∣∣∣ t ∈ R

}
, S

λ2=
9A2

β8
√
α4+β4

=

{
±1√
α4 + β4

(β2, α2, 0)

}
3 v±.

b) The H-eigendata are the following:

Sλ1=0 =

{
1√

α2 + β2 + t2
(α, β, t)

∣∣∣∣∣ t ∈ R

}
, S

λ2=
9A2(β2−α2)2

β8

=

{
±
(

β√
α2 + β2

,
−α√
α2 + β2

, 0

)}
.

Corollary 2. The Candecomp approximation of the Langmuir-Cartan tensor (1) is twofold:

C ∼ A = λ2 · v± ⊗ v± ⊗ v±, v± ∈ Sλ2 .

Moreover, the HOSVD decomposition and the partial/total ranks of the Cartan tensor are shown
to be relevant in estimating the anisotropy level of the direction-dependent Finsler structure. We
also note that while the Z-eigenproblem allows a globally covariant alternative, the H-eigenproblem
exhibits a strongly local character.
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Invariant structures on homogeneous Φ-spaces and Lie groups
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Homogeneous Φ-spaces were �rst introduced by V.I. Vedernikov in 1964. Fundamental re-
sults for regular Φ-spaces and, in particular, homogeneous k-symmetric spaces were obtained by
N.A. Stepanov, A. Ledger, A. Gray, J.A. Wolf, A.S. Fedenko, O. Kowalski and others. It turned
out that homogeneous k-symmetric spaces G/H admit a commutative algebra A(θ) of canonical
structures [2]. The remarkable feature of these structures is that all of them are invariant with
respect to both the Lie group G and the generalized "symmetries" of G/H. The classical example
is the canonical almost complex structure J on homogeneous 3-symmetric spaces with its many
applications (N.A. Stepanov, A. Gray, V.F. Kirichenko, S. Salamon and others). For k > 3 the
algebra A(θ) contains a large family of classical structures such as almost complex (J2 = −id),
almost product (P 2 = id), f -structures of K. Yano (f3 + f = 0) and some others [2]. We dwell on
several applications of canonical structures as well as on left-invariant structures on nilpotent and
solvable Lie groups.
1) The generalized Hermitian geometry (V.F. Kirichenko, D. Blair, S. Salamon and others): canon-

ical nearly K�ahler, Killing, Hermitian metric f -structures on homogeneous k-symmetric spaces [2],
[3]; left-invariant nearly K�ahler and Hermitian f -structures on some classes of nilpotent Lie groups
(especially, on 2-step nilpotent and some �liform Lie groups [4]); on generalized (in various senses)
Heisenberg groups in dimension 5, 6 [5], and 8; on special solvable Lie groups (group of hyperbolic
motions of the plane and its generalizations, the oscillator group and some others); heterotic strings.
2) Homogeneous Riemannian geometry: the Naveira classi�cation of Riemannian almost product

structures; canonical distributions on Riemannian homogeneous k-symmetric spaces; the classes F
(foliations), AF (anti-foliations), TGF (totally geodesic foliations); the Reinhart foliations [2].
3) Elliptic integrable systems: homogeneous k-symmetric spaces and associated elliptic integrable

systems; a new generalization of almost Hermitian geometry; a new contribution to nonlinear sigma
models (F. Burstall, I. Khemar [7]).
4) Metallic structures: so-called metallic structures (golden, silver and others), which are fairly

popular (especially, golden structures) in many recent publications (M. Crasmareanu, C.-E. Hret-
canu [8], A. Salimov, F. Etayo and others); canonical structures of golden type on homogeneous
k-symmetric spaces [9].
5) Symplectic geometry: bi-Poisson geometry and bi-Hamiltonian systems [10], Hamiltonian vec-

tor �elds and integrable almost-symplectic Hamiltonian systems [11], canonical almost symplectic
structures on Riemannian homogeneous k-symmetric spaces.
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Every 2-dimensional Banach space has the Mazur-Ulam property
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A Banach space X is de�ned to have the Mazur�Ulam property if for every Banach space Y
every isometry f : SX → SY between the unit spheres of X,Y extends to a linear isometry of the
spaces X,Y . In 1987 Tingley posed a (still open) problem if every Banach space has the Mazur-
Ulam property. It has been shown that many classical Banach spaces (like C(K), `p(Γ), Lp(µ)) do
have the Mazur-Ulam property. The main result of the talk is the following solution of the Tingley
problem in dimension 2.

Theorem 1. Every 2-dimensional Banach space has the Mazur�Ulam property.

References

[1] T. Banakh, Every 2-dimensional Banach space has the Ulam-Mazur property, preprint
(arxiv.org/abs/2103.09268).

[2] T.Banakh, J. Cabello Sanchez, Every non-smooth 2-dimensional Banach space has the Ulam-Mazur property,
Linear Algebra Appl. 625 (2021) 1�19.

[3] T. Banakh, Any isometry between the spheres of absolutely smooth 2-dimensional Banach spaces is linear, J. Math.
Analysis Appl. 500:1 (2021) 125104.

15



A connection between L-index of vector-valued entire function and
L-index of each its component

Vita Baksa
(Ivan Franko National University of Lviv, Lviv, Ukraine)

E-mail: vitalinabaksa@gmail.com

Andriy Bandura
(Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine)

E-mail: andriykopanytsia@gmail.com

Oleh Skaskiv
(Ivan Franko National University of Lviv, Lviv, Ukraine)

E-mail: olskask@gmail.com

The present talk is devoted to the properties of entire vector-valued functions of bounded L-index
in join variables. We need some notations and de�nitions. Let L : Cn → Rn+ be any �xed continuous
function. We consider a class of vector-valued entire functions F = (f1, . . . , fp) : Cn → Cp. For this
class of functions there was introduced a concept of boundedness of L-index in joint variables.
Let ‖ · ‖0 be a norm in Cp. Let L(z) = (l1(z), . . . , ln(z)), where lj(z) : Cn → R+ is a positive

continuous function. An entire vector-valued function F : Cn → Cp is said to be of bounded L-index
in joint variables, if there exists n0 ∈ Z+ such that (∀z = (z1, . . . , zn) ∈ Cn)(∀J ∈ Zn+) :

‖F (J)(z)‖0
J !LJ(z)

≤ max

{
‖F (K)(z)‖0
K!LK(z)

: K ∈ Zn+, ‖K‖ ≤ n0

}
,

where F (J)(z) = (f
(J)
1 (z), . . . , f

(J)
p (z)), f

(J)
k (z) =

∂‖J‖

∂zj11 . . . ∂zjnn
fk(z), ‖J‖ = j1 + . . . + jn, J ! =

j1! · . . . · jn! for J = (j1, . . . , jn), k ∈ {1, . . . , p}. The least such integer n0 is called the L-index in
joint variables and is denoted by N(F,L).
Denote by Dn[z0, R/L(z0)] =

{
z = (z1, . . . , zn) ∈ Cn : |zj − zj0| ≤ rj/lj(z0) for every j ∈

{1, . . . , n}
}
the closed polydisc in Cn. Let Qn be a class of continuous functions L : Cn → Rn+

such that 0 < λ1,j(R) ≤ λ2,j(R) < ∞ for any j ∈ {1, 2, . . . , n} and ∀R = (r1, . . . , rn) ∈ Rn+,
where λ1,j(R) = inf

z0∈Cn
inf {lj(z)/lj(z0) : z ∈ Dn[z0, R/L(z0)]} , λ2,j(R) is de�ned analogously with

replacement inf by sup.
For F : Cn → Cp let us introduce the sup-norm |F (z)|p = max1≤j≤p{|Fj(z)|}. The notation

A ≤ B for A = (a1, . . . , an), B = (b1, . . . , bn) ∈ Rn means that aj ≤ bj for every j ∈ {1, . . . , n}.
The following proposition was �rstly deduced for analytic curves in [1]. Similar proposition was also
obtained for analytic vector-valued functions F : B2 → C2 in the unit ball B2 = {z ∈ C2 : |z1|2 +
|z2|2 < 1}[2]. Here we present it for vector-valued entire functions F : Cn → Cp.

Proposition 1. Let L = (l1(z), . . . , ln(z)) be a positive continuous function in Cn. If each com-
ponent fs of an entire vector-valued function F = (f1, . . . , fp) : Cn → Cp is of bounded L-index
N(L, fs) in joint variables then F is of bounded L-index in joint variables in every norm, in partic-
ular, in the sup-norm and N(L;F ) ≤ max{N(L, fs) : 1 ≤ s ≤ p}, and also F is of bounded L∗-index
in the Euclidean norm with L∗(z, w) ≥ √pL(z, w) and NE(L∗, F ) ≤ max{N(L, fs) : 1 ≤ s ≤ p}.
(Here N(L, F ) and NE(L∗, F ) are the L-index and the L∗-index in joint variables with the sup-norm
and the Euclidean norm, respectively.)

Theorem 2 ([3]). Let L ∈ Qn. An entire vector-valued function F : Cn → Cp has bounded L-index
in joint variables if and only if for every R ∈ Rn+ there exist n0 ∈ Z+, p0 > 0 such that for all
z0 ∈ Cn there exists K0 ∈ Zn+, ‖K0‖ ≤ n0, satisfying inequality

16



max
{ |F (K)(z)|p
K!LK(z)

: ‖K‖ ≤ n0, z ∈ Dn[z0, R/L(z0)]
}
≤ p0

|F (K0)(z0)|p
K0!LK0(z0)

.

This theorem is basic in the theory of functions of bounded index. Theorem 2 implies also the
following corollary.

Corollary 3. Let L ∈ Qn. An entire vector-function F : Cn → Cp has bounded L-index in joint

variables in the sup-norm if and only if it has bounded L-index in joint variables in the norm ‖ · ‖0.
Theorem 4. Let L ∈ Qn. In order that an entire vector-valued function F : Cn → Cp be of bounded
L-index in joint variables it is necessary that for all R ∈ Rn+ there exist n0 ∈ Z+, p1 ≥ 1 such that
for all z0 ∈ Cn there exists K0 ∈ Zn+, ‖K0‖ ≤ n0, satisfying inequality

max{|F (K0)(z)|p : z ∈ Dn[z0, R/L(z0)]}≤p1|F (K0)(z0)|p (1)

and it is su�ciently that for all R ∈ Rn+ there exist n0 ∈ Z+, p1 ≥ 1 ∀z0 ∈ Cn ∃K0
1 = (k0

1, 0, . . . , 0),
∃K0

2 = (0, k0
2, 0, . . . , 0), . . . ,∃K0

n = (0, . . . , 0, k0
n) : k0

j ≤ n0, and

(∀j ∈ {1, . . . , n}) : max{|F (K0
j )(z)|p : z ∈ Dn[z0, R/L(z0)]} ≤ p1|F (K0

j )(z0)|p (2)
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Separable cubic stochastic operators
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symmetric matrix.
A cubic stochastic operator (CSO) has meaning of a population evolution operator, which arises

as follows: Consider a population consisting of m species.

Let x(0) = (x
(0)
1 , ..., x

(0)
m ) be the probability distribution of species in the initial generations, and

Pijk,l the probability that individuals in the ith, jth and kth species interbreed to produce an
individual l. Then the probability distribution x′ = (x′1, ..., x

′
m) of the species in the �rst generation

can be found by the total probability i.e.

W : x′l =
m∑

i,j,k=1

Pijk,lx
0
ix

0
jx

0
k, l ∈ E = {1, ...,m},

where the a matrix P ≡ P(W ) = {Pijk,l}mijk,l=1 satisfying the following properties

Pijk,l = Pkij,l = Pikj,l = Pkji,l = Pjik,l = Pjki,l ≥ 0,

m∑

l=1

Pijk,l = 1 for each i, j, k ∈ E. (1)

We de�ne a map W of the simplex

Sm−1 =

{
x = (x1, ..., xm) ∈ Rm : xi ≥ 0,

m∑

i=1

xi = 1

}
,

into itself, by the following rule

W : x′l =
m∑

i,j,k=1

Pijk,lxixjxk, l ∈ E. (2)

De�nition 1. The operator W (2) is called cubic stochastic operator (CSO).

In this paper we consider CSO (2), (1) with additional properties

Pijk,l = ailbjlckl, for all i, j, k, l ∈ E, (3)

where ail, bjl, ckl ∈ R entries of quadratic matrices A = (ail), B = (bjl) and C = (ckl) such that the
properties (1) are satis�ed for the coe�cients (3).
Then the CSO W corresponding to the matrices A, B and C has the form

x′l = (W (x))l = (A(x))l(B(x))l(C(x))l, for all l ∈ E, (4)

where

(A(x))l =
m∑

i=1

ailxi, (B(x))l =
m∑

j=1

bjlxj , (C(x))l =
m∑

k=1

cklxk. (5)

De�nition 2. The CSO (4) is called separable cubic stochastic operator (SCSO) and we denote it
by W = (A,B,C).
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We denote by m quadratic matrix m×m with elements mij = m, i, j ∈ E
If A = Im be an identity m × m matrix, i.e. ail = 0 for i 6= l and aii = 1 for all i, l ∈ E, in

properties (5). Then the following simple Proposition is useful.

Proposition 3. Let A = Im, then for matrices B = (bjl)
m
j,l=1 and C = (ckl)

m
k,l=1 of SCSO W =

(Im, B,C) the following property is true: bjlckl ≥ 0, BCT = m where and CT is the transpose of C.

Proposition 4. If A = I3, B = (bjl)
3
j,l=1 is a skew symmetric matrix. The following equation

solvable

B
(
c(k)
)T

= (3, 3, 3), k = 1, 2, 3 (6)

if and only if b23 = b13 − b12. Moreover, for the solution C = (ckl)
3
k,l=1 is the following equality

(
c(k)
)T

=

(
c1k,

3 + b13c1k

b12 − b13
,
3 + b12c1k

b13 − b12

)
, k = 1, 2, 3 (7)

is true, where (c(k)) is a row of matrix C = (ckl)
3
k,l=1.

Theorem 5. If A = I3, B = (bjl)
3
j,l=1 is a skew symmetric matrix and equality (6) is hold, then

the SCSO is the quadratic stochastic operator.
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Asymptotically equivalent subspaces of metric spaces
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We investigate the asymptotic behavior of unbounded metric spaces at in�nity. To do this we

consider a sequence of rescaling metric spaces
(
X, 1

rn
d
)
generated by a metric space (X, d) and

a scaling sequence (rn)n∈N of positive reals with rn → ∞. By de�nition, the pretangent spaces
to (X, d) at in�nity ΩX

∞,r̃ are limit points of this rescaling sequence. We found the necessary and

su�cient conditions under which two given unbounded subspaces of (X, d) have the same pretangent
spaces at in�nity.

De�nition 1. Let (X, d) be an unbounded metric space. Two sequences x̃ = (xn)n∈N ⊂ X and
ỹ = (yn)n∈N ⊂ X are mutually stable with respect to a scaling sequence r̃ = (rn)n∈N if there is a
�nite limit

lim
n→∞

d(xn, yn)

rn
.

For every unbounded metric space (X, d) and every scaling sequence r̃, we denote by Seq(X, r̃)
the set of all sequences x̃ = (xn)n∈N ⊂ X for which lim

n→∞
d(xn, p) =∞ and there is a �nite limit

lim
n→∞

d(xn, p)

rn
,

where p is a �xed point of X.

De�nition 2. A set F ⊆ Seq(X, r̃) is self-stable if any two x̃, ỹ ∈ F are mutually stable. F is
maximal self-stable if it is self-stable and, for arbitrary ỹ ∈ Seq(X, r̃), we have either ỹ ∈ F or there
is x̃ ∈ F such that x̃ and ỹ are not mutually stable.

Let (X, d) be an unbounded metric space, let Y and Z be unbounded subspaces of X and let
r̃ = (rn)n∈N be a scaling sequence.

De�nition 3. The subspaces Y and Z are asymptotically equivalent with respect to r̃ if for every

ỹ1 = (y(1)
n )n∈N ∈ Seq(Y, r̃) and z̃1 = (z(1)

n )n∈N ∈ Seq(Z, r̃)
there exist

ỹ2 = (y(2)
n )n∈N ∈ Seq(Y, r̃) and z̃2 = (z(2)

n )n∈N ∈ Seq(Z, r̃)
such that

lim
n→∞

d(y
(1)
n , z

(2)
n )

rn
= lim

n→∞
d(y

(2)
n , z

(1)
n )

rn
= 0.

We shall say that Y and Z are strongly asymptotically equivalent if Y and Z are asymptotically
equivalent for all scaling sequences r̃.

Let (X, d) be a metric space and let p ∈ X. For every t > 0 we denote by S(p, t) the sphere with
the radius t and the center p,

S(p, t) := {x ∈ X : d(x, p) = t},
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and for every Y ⊆ X we write
SYt := S(p, t) ∩ Y.

Let Y and Z be subspaces of (X, d). De�ne

ε(t, Z, Y ) := sup
z∈SZt

inf
y∈Y

d(z, y)

and
ε(t) = max{ε(t, Z, Y ), ε(t, Y, Z)},

where we set ε(t, Z, Y ) = 0 if SZt = ∅ and, respectively, ε(t, Y, Z) = 0 if SYt = ∅.

Theorem 4. Let Y and Z be unbounded subspaces of a metric space (X, d). Then Y and Z are
strongly asymptotically equivalent if and only if

lim
t→∞

ε(t)

t
= 0.

Corollary 5. Let (X, d) be an unbounded metric space and let Y be an unbounded subspace of X.
Then the following conditions are equivalent.

(1) For every r̃ and every maximal self-stable X̃∞,r̃ ⊆ Seq(X, r̃) there is a maximal self-stable

Ỹ∞,r̃ ⊆ Seq(X, r̃) such that Ỹ∞,r̃ ⊆ X̃∞,r̃ and the embedding EmY : ΩY
∞,r̃ → ΩX

∞,r̃ is an
isometry.

(2) The equality

lim
t→∞

ε(t,X, Y )

t
= 0

holds.
(3) X and Y are strongly asymptotically equivalent.

Remark 6. Theorem 4 and Corollary 5 can be considered as asymptotic variants of previously
proved facts from [1].
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The main solutions to the Polchinski's paradox [7] are Novikov's self-consistent causal loops [5]
referring to a Reciprocity Principle (RP) in physics ([2, 3, 4]) whereby the past determines the future
as well as the future determines the past. The recent proposal of a quantum circuit formulation
of the famous wormhole billiard ball paradox [1] has renovated the interest for closed time-like
curves (CTCs) applied to elementary particles. We wish to enrich such discussion by focusing on
an electron entering in a time-travel tunnel so that it can collide with its past self at low energy.
We investigate the graph isomorphism (GI) of two alternative cases about the exiting particle: 1) If
it is still an electron, then the collision de�ects the trajectory of the incoming particle just towards
the tunnel entrance (within a stable time loop). 2) If it is a positron, i.e., matter going backwards
in time [6], then the interaction with the incoming electron is a process of pair production which
is reversed inside the tunnel (as annihilation) according to the RP. Our GI analysis raises open
questions ranging from the role of a preferential arrow of time to the validity of the law of inertia
in chronology violations.
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Geometrical Langlands Rami�cations and Di�erential Operators
Classi�cation by Verma Module Extensions

Prof. Dr. Francisco Bulnes
(Department of Research in Mathematics and Engineering, TESCHA, Federal Highway
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Studies realized to the di�erential operator classi�cation have been realized using the generalized
Verma modules as classifying spaces de�ned by the geometrical Langlands correspondences through
of functors characterized for integral transforms to de�ne the equivalences between geometrical
objects of holomorphic bundles and objects of an algebra of operators. Likewise are characterized
the Lie algebras of these di�erential operators under the Hecke categories and their classifying spaces
as Verma modules extensions. Likewise, is had the following result:

Theorem 1. (F.Bulnes).The derived category of quasi-G- invariants DG/H− modules formed with

the extended and generalized Verma modules given for LΦµ(L(M)) =M� ρµ(V),∀V ∈ (LocL), can
be identi�ed for a critically twisted sheaves category of D-modules on the moduli stack BunG,y,∀y ∈
X (singularity) identi�ed by the Hecke category HG,K,y, (geometrical Langlands correspondence), if
this is an image of integral transforms acting on rami�cations of the Hecke category HG, ∀λ ∈ h∗(for
example HG,λ) on the �ag manifold G/B, with weight corresponding to twisted di�erential operators
on BunG,y.

Key words: Langlands correspondence, Hecke sheaves category, moduli stacks, Verma modules,
generalized D-modules, Verma Module Extensions.

2010 AMS Classi�cation. 53D37; 11R39; 14D24; 83C60; 11S15.
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Conharmonic Transformations of Locally Conformal K�ahler
Manifolds
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A Hermitian manifold (M2m, J, g) is called a locally conformal K�ahler manifold (LCK - manifold)
if there is an open cover U =

{
Uα
}
α∈A of M2m and a family {σα}α∈A of C∞ functions σα : Uα → R

so that each local metric

ĝα = e−2σαg|Uα
is K�ahlerian. An LCK - manifold is endowed with some form ω, so called Lee form which can be
calculated as [1]

ω =
1

m− 1
δΩ ◦ J.

The form should be closed:

dω = 0.

Here and below, we denote by comma covariant di�erentiation with respect to the Levi-Civita
connection of (M2m, J, g).
If a contravariant analitic vector �eld ξ generates conformal in�nitesimal transformation of an

LCK-manifold, then the �eld satisfy the system [2]

1) ξi,j = ξij ;
2) ξi,j + ξj,i =

(
ωαξ

α + C
)
gij ;

3) ξi,jk = ξαR
α
kji + 1

2

((
ωαξ

α
)
,k
gij +

(
ωαξ

α
)
,j
gik −

(
ωαξ

α
)
,i
gjk
)
;

4) J ij,kξ
k − Jαj ξi,α + J iαξ

α
,j = 0.

(1)

If a conformal transformation (101) also preserves a product Rgij , i. e. the equation

Lξ
(
Rgij

)
= 0 (2)

holds, then the transformation is called conharmonic. We obtain the theorem.

Theorem 1. If an LCK-manifold (M2m, J, g) of non-zero scalar curvature admits nontrivial con-
harmonic transformations, then the general solution of the PDE system (101)-(2) depends on no
more than m2 + 2m essential parameters.
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Also we have proved that the tensor

Pij
def
=

1

n− 2
Rij −

1

2
ωi,j −

1

4
ωiωj +

1

8
ωαωαgij

is preserved by conharmonic transformations.
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Applications of Linking to the Study of Causality

Vladimir Chernov
(Dartmouth College, USA)

E-mail: Vladimir.Chernov@dartmouth.edu

We will discuss the results about causality in spacetimes and Legendrian linking. The spheres
are linked in the space of all light rays associated to the spacetimes. The results were obtained in
the joint works with Stefan Nemirovski and, in particular, solve the Low conjecture, the Legendrian
Low conjecture of Natario and Tod and the problem communicated by Penrose on Arnold problem
list.
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Problem on extremal decomposition of the complex plane

Aleksandr Bakhtin, Iryna Denega
(Institute of mathematics of the National Academy of Sciences of Ukraine, Complex analysis and

potential theory Department, 3 Tereschenkivska St, Kyiv, Ukraine, 01024)
E-mail: abahtin@imath.kiev.ua, iradenega@gmail.com

Let N, R be the sets of natural and real numbers, respectively, let C be the complex plane, and
let C = C

⋃{∞} be its one-point compacti�cation, R+ = (0,∞). Let r(B, a) be the inner radius of
the domain B ⊂ C relative to a point a ∈ B. The inner radius of the domain B is connected with
Green's generalized function gB(z, a) of the domain B by the relations

gB(z, a) = − ln |z − a|+ ln r(B, a) + o(1), z → a,

gB(z,∞) = ln |z|+ ln r(B,∞) + o(1), z →∞.
De�nition 1. Let n ∈ N, n > 2. The system of points An :=

{
ak ∈ C : k = 1, n

}
is called n-ray,

if |ak| ∈ R+ for k = 1, n and 0 = arg a1 < arg a2 < . . . < arg an < 2π.

Denote αk :=
1

π
arg

ak+1

ak
, αn+1 := α1, k = 1, n,

n∑
k=1

αk = 2.

Problem 2. (V.N. Dubinin [1, 2]) For all values of the parameter γ ∈ (0, n] to show that the
maximum of the functional

In(γ) = rγ (B0, 0)

n∏

k=1

r (Bk, ak) ,

where B0, B1, B2,..., Bn, n > 2, are pairwise disjoint domains in C, a0 = 0, |ak| = 1, k = 1, n, is
attained for the con�guration of domains Bk and points ak which possesses the n-fold symmetry.

In work [1], the above-formulated problem was solved for the value of the parameter γ = 1 and
all values of the natural parameter n > 2. Namely, it was shown that the following inequality holds

r(B0, 0)

n∏

k=1

r(Bk, ak) 6 r (D0, 0)

n∏

k=1

r (Dk, dk) ,

where dk, Dk, k = 0, n, are the poles and circular domains of the quadratic di�erential

Q(w)dw2 = −(n2 − 1)wn + 1

w2(wn − 1)2
dw2.

In work [3], L.V. Kovalev got its solution for de�nite su�ciently strict limitations on the geometry
of arrangement of the systems of points on a unit circle, namely, for systems of points for which the
following inequalities hold

0 < αk 6 2/
√
γ, k = 1, n, n > 5.

In work [4], it was shown that the result by L.V. Kovalev is true for n = 4. The solution of this
problem for γ ∈ (0, 1] was given in work [5]. Some partial cases of this problem were studied, for
example, in [6�10].
For the further analysis, we calculate the quantity

I0
n(γ) = rγ (D0, 0)

n∏

k=1

r (Dk, dk) ,
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where dk, Dk, k = 0, n, d0 = 0, are, respectively, the poles and circular domains of the quadratic
di�erential

Q(w)dw2 = −(n2 − γ)wn + γ

w2(wn − 1)2
dw2.

As was shown in [1, 2, 3, 6], the quantity I0
n(γ) takes the form

I0
n(γ) =

(
4

n

)n
(

4γ
n2

) γ
n

(
1− γ

n2

)n+ γ
n

(
1−

√
γ
n

1 +
√
γ
n

)2
√
γ

.

Theorem 3. [9] Let γ ∈ (1, 2]. Then, for any di�erent points a1 and a2 of a unit circle and any
mutually disjoint domains B0, B1, B2, a1 ∈ B1 ⊂ C, a2 ∈ B2 ⊂ C, a0 = 0 ∈ B0 ⊂ C, the inequality

rγ (B0, 0) r (B1, a1) r (B2, a2) 6 I0
2 (γ)

(
1

2
|a1 − a2|

)2−γ
.

is true. The sign of equality in this inequality is attained, when the points a0, a1, a2 and the domains
B0, B1, B2 are, respectively, the poles and circular domains of the quadratic di�erential

Q(w)dw2 = −(4− γ)w2 + γ

w2(w2 − 1)2
dw2.

Remark 4. Theorem 3 yields the complete solution of the above-posed problem of �nding the
maximum of product of inner radii of two domains relative to the points of a unit circle on the
degree γ of the inner radius of the domain relative to the origin at arbitrary γ ∈ (0, 2 ], provided
that all three domains are mutually non-overlapping domains.

Theorem 5. [9] Let n ∈ N, n > 3, γ ∈ (1, n].Then, for any system of di�erent points An =
{ak}nk=1 ∈ C\{0} of a unit circle and for any collection of mutually disjoint domains B0, Bk,

a0 = 0 ∈ B0 ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, the following inequality holds

rγ(B0, 0)
n∏

k=1

r(Bk, ak) 6
(

sin
π

n

)n−γ (
I0

2

(
2γ

n

))n
2

.
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Parallel spinors on Lorentzian Weyl spaces

Andrei Dikarev
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In that talk I will present the recent results of joint work with Anton S. Galaev on Lorentzian
Weyl spin manifolds admitting weighted parallel spinors [2].
Parallel spinors are special Killing spinors which represent supersymmetry generators of super-

symmetric �eld theories and supergravity theories. The physical motivation for study Weyl spaces
with weighted parallel spinors may be found in [3]. The work [3] provides a deep investigation of
weighted parallel spinors on Einstein-Weyl manifolds of Lorentzian signature with a special atten-
tion to the dimensions 4 and 6. The techniques developed for classi�cation of supergravity solutions
was used in that work.
We provide a description of simply connected Lorentzian Weyl spin manifolds admitting weighted

parallel spinors. The main tool for that are holonomy groups. There is a one-to-one correspondence
between the parallel spinors and the holonomy-invariant elements of the spinor module. This cor-
respondence is used in known results describing the following simply connected spin manifolds with
parallel spinors: Riemannian manifolds, pseudo-Riemannian manifolds with irreducible holonomy
groups, Lorentzian manifolds.
Using the recent classi�cation of holonomy algebras of Lorentzian Weyl manifolds [1], we classify

the holonomy algebras of Lorentzian Weyl spaces admitting weighted parallel spinors. It turns
out that for non-closed Weyl structures, there are two types of such algebras. In each case, the
dimension of the space of parallel spinors is found.
For Lorentzian Weyl manifolds admitting recurrent null vector �elds are introduced special local

coordinates similar to Kundt and Walker ones. Using that, the local form of all Lorentzian Weyl
spin manifolds with weighted parallel spinors is given. The Einstein-Weyl equation for the obtained
Weyl structures is analyzed and examples of Einstein-Weyl spaces with weighted parallel spinors
are given. Some examples have previously appeared in [3] and other literature. It turns out that
the Einstein-Weyl equation implies that the weight of a non-zero weighted parallel spinor is equal
to dimM − 4. Parallel spinors of that weight were studied in [3]. In contrast, we describe Weyl
structures with non-zero weighted parallel spinors of arbitrary weight.
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Matrix problems, triangulated categories and stable homotopy
types
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The talk is a survey of some results on classi�cations of stable homotopy types of polyhedra
(�nite CW-complexes). We present technical tools for calculations in triangulates categories, which
are related to marix problems, namely, to bimodule categories. Applying this technique to the stable
homotopy category [1] we obtain a complete classi�cation of stable homotopy types of polyhedra
having cells at most in 4 successive dimensions and of torsion free polyhedra having cells at most in
7 successive dimensions. For details, see [2, 3]. These results were mainly obtained in collaboration
with H.-J. Baues.
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On the properties smooth manifolds de�ned by intersections

V.S.Dryuma
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The report is devoted to study properties and construction an examples of the (3, 4)-dim smooth
manifolds contained the surfaces of constant curvature.
At the �rst will be considered the Dyck-surface (W.Dyck,1888) de�ned by the algebraic equation

(
z1

2 + z2
2
) (
z1

2 + z2
2 + z3

2
)
− z3

(
4 z1

2 + 2 z2
2
)

= 0, (1)

where z1, z2, z3 are the complex coordinates: z1 = x + Ia, z2 = y + Ib, z3 = z + Ic, I2 = −1.
The complex surface (1) is generalization of real projective surface and belongs to the class of the
one-side surfaces having an important applications in various branch of modern algebraic topology
(J.Milnor,1968).

Proposition 1. Joint consideration both equations (1) and the equation of the 5D-sphere |z1|2 +
|z2|2 + |z3|2 = 1 with real coordinates (x, y, z, a, b, c), in general, lead us to the some 4D-space, where
(t)-is auxiliary parameter:

4G(a, b, c, z, t) = bc2 − b+ b3 + bz2 + 2 ct− ztc− bt2 + ba2 = 0, (2)

containing 3D-subspace with the equation

3H(a, b, c, z) = 4 a2b2 − 4 b2 + 4 b4 + 4 c2 + 4 b2c2 − 4 zc2 + 4 b2z2 + z2c2 = 0. (3)

With the equation (3) at the condition b = b(a) can be associated an invariant second order ODE
of the form b′′ −A1b

′3 − 3A2b
′2 − 3A3b

′ −A4 = 0, Ai = Ai(a, b) having the General integral

3F (a, b,C1 ,C2 ) = −C1 − b4 − a2b2 + 2 b2C2 = 0.

having an algebraic curve of genus ga,b = 1, and which is placed on the 2D-surface, equipped by the
metrics of const positive curvature K = 1

φ2ds2 = ψ1(x, y)dx2 +2ψ2(x, y)dx dy+ψ3(x, y)dy2, φ(x, y) = ψ1 (x, y)ψ3 (x, y)−(ψ2 (x, y))2 . (4)

The components ψi of the metrics are determined from the system (M.R.Liouville,1897)

ψ1x + 2 A3ψ1 − 2 A4ψ2 = 0 , ψ3y + 2 A1ψ2 − 2 A2ψ3 = 0 ,

ψ1y + 2ψ2x − 2 A3ψ2 + 4 A2ψ1 − 2 A4ψ3 = 0, ψ3x + 2ψ2y + 2 A2ψ2 − 4 A3ψ3 + 2 A1ψ1 = 0. (5)

In the second part of report we consider some examples of the Brieskorn type manifolds which are
the intersection of the �fe-dimensional sphere with the singular manifold (l = 2, m = 3, n = 5)

|z1|2 + |z2|2 + |z3|2 = 1, z2
1 + z3

2 + z5
3 = 0. (6)

Proposition 2. From the equations of the system (6)

x2 + a2 + y2 + b2 + z2 + c2 − 1 = 0, 2xa+ 3 y2b− b3 + 5 z4c− 10 z2c3 + c5 = 0,

x2 − a2 + y3 − 3 yb2 + z5 − 10 z3c2 + 5 zc4 = 0, (7)

on the six real coordinates z1 = x + Ia, z2 = y + Ib, z3 = z + Ic, in the case the relation z = z(y)
holds, the linearizable the second order ODE

d2

dy2
z(y) =

(
d
dyz(y)

)(
−y d

dyz(y) + z(y)
)

yz(y)
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can be derived. It has general integral

F (z, y,C1 ,C2 ) = z −
√

C1 y2 + 2 C2 = 0,

containing the 2D-surface of constant curvature with the components of the metrics de�ned from
(1),

ψ2 (x, y) =

(
C3 x

2 + C4

)
y5/3

3
√
x

+
C1 x

2 + C2
3
√
x 3
√
y

, ψ1 (x, y) = −x
2/3
(
−C6 + C3 y

4 + 2 C1 y
2
)

y4/3
,

ψ3 (x, y) = −y
2/3
(
−C5 + x4C3 + 2x2C4

)

x4/3

with the parameters Ci .
By analogy are considered the case of tetrahedral space which corresponds to the intersection of

the �fe-dimensional sphere with singular manifold (l = 2, m = 3, n = 4)

|z1|2 + |z2|2 + |z3|2 = 1, z2
1 + z3

2 + z4
3 = 0, (8)

for which corresponding ODE has the form

d2

dy2
z(y) = 1/2

(
d
dyz(y)

)(
3
(
d
dyz(y)

)2
y2 − 6

(
d
dyz(y)

)
yz(y) + 2 (z(y))2

)

y (z(y))2

and the octahedral space de�ned by the condition

|z1|2 + |z2|2 + |z3|2 = 1, z2
1 + z3

2 + z2z
3
3 = 0, (9)

with the ODE: d2

dy2 z(y) = −
(
d
dy
z(y)

)2

z(y) , and corresponding metrics (4) with the components ψi(x, y)

ψ3 (x, y) = −2 y2/3C3 x
2 − 4 y2/3C4 x+ C5 y

2/3, ψ2 (x, y) =
y2C3 x+ y2C4 + C1 x+ C2

3
√
y

,

ψ1 (x, y) =
−1/2 C3 y

4 − C1 y
2 + C6

y4/3
.

To studying a moore detail properties of considered spaces can be used the 4D-Riemann exten-
sions

ds2 = 2 (zA3 − tA4 ) dx 2 + 4 (zA2 − tA3 ) dx dy + 2 (zA1 − tA2 ) dy2 + 2 dy dz + 2 dy dt

of 2D-metrics and with help of the Liouville-Tresse-Cartan invariants to investigated topological
properties of the Brieskorn manifolds.

References

[1] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies,No.61,Princeton University
Press,Princeton,N.J.,1968.

[2] V. Dryuma. On dual equations in theory of the second order ODE's, arXiv:nlin/0701047 v1 p.1-17, 2007.
[3] V. Dryuma. Homogenious extensions of the �rst ordef ODE's, Algebrai Topology an Abelian Functions, Buch-

staber'70 Conference, 18-22 June 2013, Steklov's MI RAS, Moscow, ABSTRACTS, p.78-79, 2013.
[4] V. S. Dryuma. On the equation of homologous sphere of Poincare. Ìåæäóíàðîäíàÿ êîíôåðåíöèÿ "Êëàññè÷åñêàÿ

è ñîâðåìåííàÿ ãåîìåòðèÿ", (Ìîñêâà 22-25 àïðåëÿ 2019 ã.), ïîä ðåä. À.Â.Öàðåâà ÌÃÏÓ, 20�21, 2019.
[5] V. S. Dryuma. On the 3D-manifolds determined by the second order ODE's. Ìåæäóíàðîäíàÿ íàó÷íàÿ

êîíôåðåíöèÿ "Ñîâðåìåííàÿ ãåîìåòðèÿ è åå ïðèëîæåíèÿ-2019", (Êàçàíü,4-7 ñåíòÿáðÿ 2019 ã.), Ñáîðíèê
òðóäîâ,-Êàçàíü: Èçä.Êàçàíñêîãî óíèâåðñèòåòà, 2019. ñòð.55�60, 2019.

[6] V. S. Dryuma.The Riemann and Einstein-Weyl geometries in theory of ODE,their applications and all
that.A.B.Shabat et al.(eds.),New trends in Integrability and Partial Solvability,115-156. Kluwer Academic Pub-
lishers. Printed in the Nederlands.

32



Some applications of transversality for in�nite dimensional
manifolds
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We present some transversality results for a category of Fr�echet manifolds, the so-called MCk-
Fr�echet manifolds. In this context, we apply the obtained transversality results to construct the
degree of nonlinear Fredholm mappings by virtue of which we prove a rank theorem, an invariance
of domain theorem and a Bursuk-Ulam type theorem.
We refer to [1, 2] for the basic de�nitions and result regarding MCk-Fr�echet manifolds. We

assume that E,F are Fr�echet spaces and U ⊆◦ E is an open subset, also that M,N are MCk-
Fr�echet manifolds.

Theorem 1 (Transversality Theorem). Let ϕ : M → N be an MCk-mapping, k ≥ 1, S ⊂ N an
MCk-submanifold and ϕ t S. Then, ϕ−1(S) is either empty of MCk-submanifold of M with

(Txϕ)−1(TyS) = Tx(ϕ−1(S)), x ∈ ϕ−1(S), y = ϕ(x).

If S has �nite co-dimension in N , then codim(ϕ−1(S)) = codimS. Moreover, if dimS = m < ∞
and ϕ is an MCk-Lipschitz-Fredholm mapping of index l, then dimϕ−1(S) = l +m.

Theorem 2 (The Parametric Transversality Theorem). Let A be a manifold of dimension n, S ⊂ N
a submanifold of �nite co-dimension m. Let ϕ : M ×A→ N be an MCk-mapping, k ≥ {1, n−m}.
If ϕ is transversal to S, ϕ t S, then the set of all points x ∈M such that the mappings

ϕx : A→ N, (ϕx(·) := ϕ(x, ·))
are transversal to S, is residual M .

Theorem 3 (Rank theorem forMCk-mappings). Let ϕ : U ⊆◦ E → F be an MCk-mapping, k ≥ 1.
Suppose u0 ∈ U and Dϕ(u0) has closed split image F1 with closed complement F2 and split kernel E2

with closed complement E1. Also, assume Dϕ(U)(E) is closed in F and Dϕ(u)|E1 : E1 → Dϕ(u)(E)
is anMCk-isomorphism for each u ∈ U . Then, there exist open sets U1 ⊆◦ F1⊕E2, U2 ⊆◦ E, V1 ⊆◦ F ,
and V2 ⊆◦ F and there are MCk-di�eomorphisms φ : V1 → V2 and ψ : U1 → U2 such that

(φ ◦ ϕ ◦ ψ)(f, e) = (f, 0), ∀(f, e) ∈ U1.

Theorem 4 (Invariance of domain for Lipschitz-Fredholm mappings). Let ϕ : M → N be an
MCk-Lipschitz-Fredholm mapping of index zero, k > 1. If ϕ is locally injective, then ϕ is open.

De�nition 5. Let ϕ : M → N be a non-constant closed Lipschitz-Fredholm mapping with index
l ≥ 0 of class MCksuch that k > l + 1. We associate to ϕ a degree, denoted by degϕ, de�ned as
the non-oriented cobordism class of ϕ−1(q) for some regular value q. If l = 0, then degϕ ∈ Z2 is
the number modulo 2 of preimage of a regular value.

Theorem 6 (Bursuk-Ulam Theorem). Let ϕ : U → F be a non-constant closed Lipschitz-Fredholom
mapping of class MC2 with index zero, where U ⊆◦ F is a centrally symmetric and bounded. If ϕ is
odd and for u ∈ U we have u /∈ ϕ(∂U). Then deg(ϕ, 0F ) ≡ 1 mod 2.
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Uniqueness theorems for almost periodic objects
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New uniqueness theorems are considered for various types of almost periodic objects: functions,
measures, distributions, multisets, holomorphic and meromorphic functions, Fourier quasicrystals.
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On symmetry reduction and some classes of invariant solutions of
the (1 + 3)-dimensional homogeneous Monge-Amp�ere equation
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A solution of many problems of the geometry, theoretical and mathematical physics has reduced to
the investigation of the Monge-Amp�ere equations in the spaces of di�erent dimensions and di�erent
types.
It is well known that the symmetry reduction is one of the most powerful tools to investigate

partial di�erential equations (PDEs) with non-trivial symmetry groups. In particular, for this
purpose, we can use a classical Lie-Ovsiannikov method. This method, among the other, makes
it possible to perform the symmetry reduction and construction of invariant solutions of those
equations.
In 1984, Grundland, Harnad, and Winternitz pointed out that the reduced equations, obtained

with the help of nonconjugate subalgebras of the same ranks of the Lie algebras of the symmetry
groups of some PDEs, were of di�erent types. They also investigated the similar phenomenon. The
results obtained cannot be explained using the classical Lie-Ovsiannikov approach.
To try to explain some of the di�erences in the properties of the reduced equations for PDEs

with nontrivial symmetry groups, we suggested to investigate the relationship between the structural
properties of nonconjugate subalgebras of the same rank of the Lie algebras of the symmetry groups
of those PDEs and the properties of the reduced equations corresponding with them.
At the present time, we have investigated the relationship between structural properties of the

three-dimensional nonconjugate subalgebras of the same rank of the Lie algebra of the Poincar�e
group P (1, 4) and the properties of reduced equations for the (1 + 3)-dimensional homogeneous
Monge-Amp�ere equation. We obtained the following types of the reduced equations:
- identities,
- the linear ordinary di�erential equations,
- the nonlinear ordinary di�erential equations,
- the partial di�erential equations.
Some classes of invariant solutions have been constructed.
In my report, I plan to present some of the results obtained concerning with reduction of the

(1 + 3)-dimensional homogeneous Monge-Amp�ere equation to identities.

References

[1] G. �Ti�teica. Sur une nouvelle classe de surfaces. Comptes Rendus Math�ematique. Acad�emie des Sciences. Paris,
144 : 1257�1259, 1907.

[2] A.V. Pogorelov. The multidimensional Minkowski problem. Moscow : Nauka, 1975.
[3] Shing-Tung Yau. On the Ricci curvature of a compact K�ahler manifold and the complex Monge-Amp�ere equation.

I. Comm. Pure Appl. Math., 31(3) : 339�411, 1978.
[4] Shing-Tung Yau, Steve Nadis. The shape of inner space. String theory and the geometry of the universe's hidden

dimensions. New York : Basic Books, 2010.
[5] S. Lie. Zur allgemeinen Theorie der partiellen Di�erentialgleichungen beliebiger Ordnung. Berichte S�achs. Ges.,

2 : 53�128, 1895.

35



[6] L.V. Ovsiannikov. Group analysis of di�erential equations. Moscow : Nauka, 1978.
[7] P.J. Olver. Applications of Lie Groups to Di�erential Equations. New York : Springer-Verlag, 1986.
[8] A.M. Grundland, J. Harnad, P. Winternitz. Symmetry reduction for nonlinear relativistically invariant equations.

J. Math. Phys., 25(4) : 791�806, 1984.
[9] A.G. Nikitin, O. Kuriksha. Invariant solutions for equations of axion electrodynamics. Commun. Nonlinear Sci.

Numer. Simul., 17 : 4585�4601, 2012.
[10] V. Fedorchuk, V. Fedorchuk. Classi�cation of Symmetry Reductions for the Eikonal Equation. Lviv : Pidstryhach

Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences of Ukraine, 2018.
[11] V.I. Fushchich, N.I. Serov. Symmetry and some exact solutions of the multidimensional Monge-Amp�ere equation.

Dokl. Akad. Nauk SSSR, 273(3) : 543�546, 1983.
[12] C. Udri�ste, N. B�il�a. Symmetry group of �Ti�teica surfaces PDE. Balkan J. Geom. Appl., 4 : 123�140, 1999.
[13] V.M. Fedorchuk, V.I. Fedorchuk. On classi�cation of the low-dimensional nonconjugate subalgebras of the Lie al-

gebra of the Poincar�e group P (1, 4). Proc. of the Inst. of Math. of NAS of Ukraine. Kyiv : Institut of Mathematics
of NAS of Ukraine, 3(2) : 302�308, 2006.

[14] V.M. Fedorchuk, V.I. Fedorchuk. On the classi�cation of symmetry reductions for the (1+3)-dimensional Monge
� Amp�ere equation. Mathematical Methods and Physicomechanical Fields, 63(2) : 7�16, 2020.

[15] V.M. Fedorchuk, V.I. Fedorchuk. On Symmetry Reduction of the (1 + 3)-Dimensional Inhomogeneous Monge-
Amp�ere Equation to the First-Order ODEs. Applied Mathematics, 11(11) : 1178�1195, 2020.

36



Deformations of circle-valued Morse functions on 2-torus
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Let M be a smooth compact surface, X be a closed (possible empty) subset of M . By P we also
denote either R or S1. The group D(M,X) of di�eomorphisms of M �xed on X acts from the right
on the space of smooth maps C∞(M,P ) by the rule

γ : C∞(M,P )×D(M,X)→ C∞(M,P ), γ(f, h) = f ◦ h.
With respect to γ we denote by

S(f,X) = {h ∈ D(M,X) | f ◦ h = f},
O(f,X) = {f ◦ h |h ∈ D(M,X)}

the stabilizer and the orbit of f ∈ C∞(M,P ). Endow strong Whitney C∞-topologies on C∞(M,P )
and D(M,X); then for a map f ∈ C∞(M,P ) these topologies induce some topologies on S(f,X)
and O(f,X). We denote by Did(M,X) a connected component of the identity map D(M,X), and
by Of (f,X) a connected component of O(f,X) containing f . If X = ∅ we omit the symbol �∅�
from our notation.
To state our main result we need a notion of wreath product of groups of a special kind. Let

G be a group, n ≥ 1 be an integer. A semi-direct product Gn o Z with respect to a non-e�ective
Z-action α on Gn by cyclic shifts

α(b0, b1, . . . , bn−1; k) = (bk, b1+k, . . . , bn+k−1),

where all indexes are taken modulo n, will be denoted by G on Z and called a wreath product of G
with Z under n.
The following theorem is our main result.

Theorem 1 ([1]). Let f be a function from F(T 2, P ) with at least one critical point and whose
Kronrod-Reeb graph contains a cycle. Then there exist a cylinder Q ⊂ T 2 such that f |Q : Q→ P is
a Morse function, n ∈ N such that there is an isomorphism

π1Of (f) ∼= π0S ′(f |Q, ∂Q) on Z,
where S ′(f |Q, ∂Q) = S(f |Q, ∂Q) ∩ Did(Q, ∂Q).
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Realization of a graph as the Reeb graph of a Morse, Morse�Bott
or round function
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Reeb graph Rf of a function f : M → R is a topological space obtained by contracting the
connected components of the level sets of f to points, endowed with the quotient topology; for a
smooth function, connected components containing critical points are called vertices, i.e., the Reeb
graph of a smooth function is the quotient space with marked points.
By a graph we understand a pseudograph (allowing loop edges and multiple edges); it has a

geometric realization as a one-dimensional CW complex, in which 0-cells correspond to vertices and
1-cells to edges. A graph needs not to be connected.

De�nition 1. We say that a Reeb graph Rf has the structure of a �nite graph G, or Rf is isomor-
phic to G, or Rf is G, if there exists a homeomorphism Rf → G mapping one-to-one the vertices
of Rf to the vertices of G.

Generally, the Reeb graph is not a �nite graph; in our talk we consider a simple counterexamle.
Recently Saeki proved a criterion:

Theorem 2 ([1]). Let M be a closed manifold, f : M → R a smooth function. Then the Reeb graph
Rf has the structure of a �nite graph if and only if f has a �nite number of critical values.

Every graph without loop edges is the Reeb graph of some function:

Theorem 3 ([2]). Let G be a �nite graph. Then there exist a closed manifold M , and a smooth
function f : M → R such that its Reeb graph Rf has the structure of G if and only if G has no loop
edges.

The problem of whether a �nite graph is the Reeb graph of some function was �rst studied in
2006 by Sharko [3]. He considered functions with �nite critical set Crit(f). In particular, he showed
that the graph shown in Figure 3.1 is not the Reeb graph of any such function.

Figure 3.1.

Below we give criteria for a graph to be the Reeb graph of a function of a given class on a closed
manifold: Morse, Morse�Bott, round, and in general smooth functions whose critical set Crit(f)
consists of a �nite number of submanifolds.
In contrast to works of Michalak [4] and Mart��nez-Alfaro et al. [5] who studied the realization

problem in terms of the graph orientation, the following criteria are given in terms of the graph
structure, namely, the structure of its leaf blocks, i.e., maximal biconnected subgraphs containing
at most one cut vertex:
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Theorem 4 ([6]). A graph G is isomorphic to the Reeb graph Rf of some smooth function f with
�nite Crit(f) on a closed manifold if and only if G is �nite, has no loop edges, and all its leaf blocks
are path graphs on 2 vertices (closed intervals). The function f can be chosen Morse.

Theorem 5 ([7]). For any given n ≥ 2, a graph G is the Reeb graph Rf of some smooth f whose
Crit(f) is a �nite number of submanifolds, on closed n-manifold if and only if G is �nite, has no
loop edges, and each leaf block L has a vertex v with deg v ≤ 2, or two such vertices if L is a
non-trivial (has an edge) connected component of G. The function f can be chosen Morse�Bott.

This theorem shows that Sharko's graph in Figure 3.1 cannot be realized even as the Reeb graph
of a function whose Crit(f) is a �nite number of submanifolds. Indeed, this graph has three leaf
blocks, two of them being closed intervals, and the third leaf block has only 3-vertices.
Morse�Bott functions play a special role in the Reeb graph theory (cf. Theorem 3):

Theorem 6 ([8]). Any �nite graph is homeomorphic to the Reeb graph of a Morse�Bott function.

Note that, in contrast to Theorem 3, this theorem is true even for graphs with loop edges.
Critical set of a round function consists of a �nite number of circles. For a round function,

the structure of its Reeb graph depends not only on leaf blocks, but also on the dimension of the
manifold and its orientability:

Theorem 7 ([7]). A graph G is isomorphic to the Reeb graph of a round function f : Mn → R on
a closed n-dimensional manifold if and only if G is �nite, has no loop edges, and

each its leaf block





has a non-cut vertex v with deg v = 2 if n = 2, orientable surface

has a non-cut vertex v with deg v ≤ 2 if n = 2, non-orientable surface

is a path graph on 2 vertices (closed interval) if n ≥ 3.
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In this communication we review and study moduli spaces of abelian varieties, of p-divisible
groups, of bounded global G-shtukas and their possible foliations in characteristic p. At �rst I
recall the de�nitions of the above mentioned notions. Then we shortly survey results by Rapoport,
Richartz [1], by Oort [2], by Mantovan [3], by Arasteh Rad and Hartle [4], by Hartl and Viehmann [5],
by Harris and Taylor [6] and by Weiß [7]. More completely we discuss results by Weiß [7]. Let C be
a smooth projective geometrically irroducible curve with the function �eld Fq(C) over a �nite �eld
Fq with q elements. Let G be a parahoric Bruhat-Tits group scheme over C. Author [7] considers
�a foliation structure for Newton strata moduli spaces of bounded global G-shtukas with H-level
structure for an arbitrary parahoric Bruhat-Tits group G� and �Igusa varieties�. She obtaines a
morphism (Main Theorem 0.1) to the moduli space of global G-shtukas. The author then relates
here foliation structure to Oort`s foliations, to Harris and Taylor and to Mantovan. These results,
although di�cult to explane in a short reviiew, are well summerised in a short Introduction. Below
bounded global G-shtukas with H-level structure are considered. Brie�y, the general idea is to
start with a foliation stucture on the moduli space of such global G-shtukas and describe it �as a
product of a covering of central leaves by Igusa varieties with truncated Rapoport-Zink spaces�. The
Main Theorem 0.1 gives the morphism from the product of author`s Igusa varieties and trancated
Rapoport-Zink spaces to the moduli spaces of global G-shtukas. The morphism is �nite by the
Proposition 6.19. The author also gives an application of the Main Theorem 0.1 to the leaves inside
a Newton stratum and compute dimensions of these leaves which turns out to be the same for all
leaves. For some details, along with the references above, please see [8, 9].
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The talk is devoted to di�erential invariants of nonlinear di�erential equations of the second order
of the form

utt = [α(u)]xx + [β(u)]x + γ(u). (1)

where t, x are independent variables and α, β, γ are smooth functions of u.
We considered admissible point transformations only, i.e. transformations of the space of 0-jets

J0(R2) that preserve the class of such equations (see, for example, [1, 2]). Admissible transforma-
tions form a six-dimensional Lie group with Lie algebra G thai is generated by the admissible vector
�elds

∂

∂t
,

∂

∂x
,

∂

∂u
t
∂

∂t
, x

∂

∂x
, u

∂

∂u
. (2)

The �rst three vector �elds correspond to translation along the x, y, u axes, and the last three ones
correspond to homothety.
Write equation (1) in the following form:

utt = a′(u)u2
x − a(u)uxx − b(u)ux − c(u),

where
a(u) = α′(u), b(u) = β′(u), c(u) = γ(u).

Consider the following one-dimensional trivial bundle

π : R3 → R, π : (a, b, c) 7→ u.

A section of this bundle are parametric curve in R3 that correspond to equation (1). Let Jk(π) be
the space of k-jets of sections of π with canonical coordinates u, a0, b0, c0, . . . , ak, bk, ck.
Restriction of the Lie algebra of admissible vector �elds to the space J0(π) is given by the following

vector �elds:
∂

∂u
, 2a0

∂

∂a0
+ b0

∂

∂b0
, a0

∂

∂a0
+ b0

∂

∂b0
+ c0

∂

∂c0
, u

∂

∂u
− c0

∂

∂c0

Theorem 1. The algebra of di�erential invariants of equations (1) is generated by the following
functions:

Ia,k =
akb

2k
0

ak+1
0 ck0

, Ib,k =
bkb

2k−1
0

ak0c
k
0

, Ic,k =
ckb

2k
0

ak0c
k+1
0

,

where k = 1, 2, . . . .

The constructed invariants are analogs of curvature and torsion for curves in three-dimensional
Euclidean space.
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Let E and F be vector lattices.We say that a bilinear mapping T : E × E → F is an orthosym-
metric mapping if T (x, y) = 0 in F , whenever | x | ∧ | y |= 0 in E. Generalization of this de�nition
for n linear mapping is that T : E × E × ... × E → F is an orthosymmetric multilinear mapping
if T (x1, x2, ..., xn) = 0 for all x1, ..., xn ∈ E such that | xi | ∧ | xj |= 0 for some pair of indices
1 ≤ i, j ≤ n. By E∼ we denote the set of all order bounded linear functionals on E. E∼n denotes the
set of all order continuous linear functionals on E. By (E∼)∼n we denote the order continuous order
bidual of E. Let E1, ..., En and F be vector lattices. A multilinear mapping Ψ : E1× ...×En → F is
said to be a lattice n-morphism if | Ψ(x1, ..., xn) |= Ψ(| x1 |, ..., | xn |) for all xi ∈ Ei for i = 1, 2, ..., n.
We say that a lattice n-morphism and orthosymmetric multilinear mapping is an orthosymmetric
n-morphism.
Orthosymmetric bilinear mappings have been studied by a lot of authors. For example, M.A.

Toumi and R. Yilmaz give the extensions of orthosymmetric bilinear mapping to the order contin-
uous order bidual of a vector lattice by using Arens multiplication.
In this study, we extend an orthosymmetric n-morphism to the order continuous order bidual of

a vector lattice by using Arens product. We show that an extension of orthosymmetric n-morphism
is again orthosymmetric n-morphism. Unexplained notion and terminology we refer to the following
references.

Theorem 1. Suppose that E is an Archimedean vector lattice and F is a Dedekind complete vector
lattice. If Ψ : E ×E × ...×E → F is an orthosymmetric n-morphism, then n-th order adjoint of Ψ
on the order continuous order bidual (E∼)∼n of E is again an orthosymmetric n-morphism.
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On homotopy nilpotency of Moore space

Marek Golasi�nski
(University of Warmia and Mazury, Olsztyn, Poland)

E-mail: marekg@matman.uwm.edu.pl

Given based spaces X1, X2, we use the customary notations X1×X2 for their Cartesian product,
X1 ∨X2 for their wedge and X1 ∧X2 for the smash product of X1, X2.
Recall that an H-space is a pair (X,µ), where X is a space and µ : X ×X → X is a map such

that the diagram

X ×X µ // X

X ∨X?
�

OO

∇

<<

commutes up to homotopy, where ∇ : X ∨X → X is the folding map. An H-space X is called a
group-like space if X satis�es all the axioms of groups up to homotopy. From now on, we assume
that any H-space X is group-like. For an H-space X, we write ϕX,1 = ιX , ϕX,2 : X ×X → X for
the basic commutator map and ϕX,n+1 = ϕX,2 ◦ (ϕX,n × ιX) for n ≥ 2.
The nilpotency class nil (X,µ) of an H-space (X,µ) is the least integer n ≥ 0 for which the map

ϕX,n+1 ' ∗ is nullhomotopic and we call the homotopy associative H-space X homotopy nilpotent.
If no such integer exists, we put nil (X,µ) = ∞. In the sequel, we simply write nilX for the
nilpotency class of an H-space X.
In virtue of [2, 2.7. Theorem], we have

Theorem 1. If X is an H-space then

nilX = supm nil[Xm, X] = supm nil[X∧m, X] = supY nil[Y,X],

where m ranges over all integers and Y over all topological spaces.

Then, by means of [8, Lemma 2.6.1], we may state

Corollary 2. A connected H-space X is homotopy nilpotent if and only if the functor [−, X] on
the category of all spaces is nilpotent group valued.

With any based space X, we associate the integer nilΩ(X) called the nilpotency class of X for
the loop space Ω(X) on X. Although many results on the homotopy nilpotency have been obtained,
the homotopy nilpotency classes have been determined in very few cases.

Example 3. (1) It is well-known that

nilΩ(Sn) =





3 for n even with n 6= 2;

2 for n odd with n 6= 1, 3, 7 or n = 2;

1 for n = 1, 3, 7

for the n-sphere Sn.
(2) For the wedge Sm ∨ Sn of two spheres with m,n ≥ 2, we have

nilΩ(Sm ∨ Sn) =∞.
43



Write KPm for the projective m-space for K = R, C, the �eld of reals or complex numbers and
H, the skew R-algebra of quaternions. Then, results from [6] have been applied in [3] to study
extensively the homotopy nilpotency of the loop spaces of Grassmann and Stiefel manifolds over K,
and their p-localization.
Let S2m−1

(p) be the p-localization of the sphere S2m−1 at a prime p. The main result of the paper

[4] is the explicit determination of the homotopy nilpotence class of a wide range of homotopy
associative multiplications on localized spheres S2m−1

(p) for p > 3.

Next, let A be an Abelian group and n any integer ≥ 2. A CW -complex X satisfying πj(X) = 0
for j < n, πn(X) ≈ A and Hi(X) = 0 for i > n is known as a Moore space of type (A,n), or simply
anM(A,n) space. By [7], it is known that a Moore spaceM(A,n) with n ≥ 2 exists and, in view of
[5, Example 4.34], the homotopy type of a Moore space M(A,n) is uniquely determined by A and
n ≥ 2. This implies that every Moore space M(A,n) with n ≥ 3, is the suspension ΣM(A,n− 1).
Furthermore, in [1, Section 2], it was shown that also M(A, 2) is the suspension ΣL(A) for some
CW -complex L(A).

Now, we examine the homotopy nilpotency of M(A,n) with ≥ 2. Notice that Sn = M(Z, n) and
the wedge Sn∨Sn = M(Z⊕Z, n) for the integers Z. Then, by Example 3, we have that nilΩ(Sn) ≤ 3
but nilΩ(Sn ∨ Sn) =∞ for n ≥ 2.
First, we show the general fact

Proposition 4. If the reduced homology H̃∗(X,F) has at least two primitive generators, where F is
a �eld then ΩΣ(X) is not homotopy nilpotent.

Then, we state the main resut

Theorem 5. Let m ≥ 1, n1, . . . , nm ≥ 2 and M(Ak, nk) be Moore spaces of type (Ak, nk) for
k = 1, . . . ,m. Then:
(1) nilΩ((M(A1, n1)× · · · × (M(Am, nm)) < ∞ if and only if if Ak are torsion-free groups with

rank r(Ak) = 1 for k = 1, . . . ,m;
(2) nilΩ((M(A1, n1)∨· · ·∨M(Am, nm)) <∞ if and only if m = 1 and A1 is a torsion-free group

with rank r(A1) = 1.

In particular, we derive

Corollary 6. If M(A,n) is a Moore space with n ≥ 2 then

nilΩ(M(A,n)) <∞
if and only if A is a torsion-free group with rank r(A) = 1 or equivalently, A is a subgroup of the
rationals Q.
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The theory of multidimensional quasiconformal mappings employs three main approaches: ana-
lytic, geometric (modulus) and metric ones. In this talk, we use the last approach and establish the
relationship between various classes of mappings on Riemannian manifolds including homeomor-
phisms of �nite metric distortion (FMD-homeomorphisms), �nitely bi-Lipschitz, quasisymmetric
and quasiconformal mappings. The appropriate classes of homeomorphisms involving the modulus
technique are also presented. One of the main results shows that FMD-homeomorphisms are lower
Q-homeomorphisms. As an application, there are obtained some su�cient conditions for bound-
ary extensions of FMD-homeomorphisms. These conditions are illustrated by several examples of
FMD-homeomorphisms.

A classical example of signi�cance of metric approach can be illustrated by the Bohr-Mencho�-
Trokhymchuk theory on analyticity (monogeneity) of a complex variable function. In 1937 Mencho�
[2] generalized the Bohr theorem [1] on analytic functions in the terms of preserving in�nitesimal
circles. More precisely, for a continuous and locally univalent mapping w = f(z) of a domain D
onto a domain D∗ and z0 ∈ D, take the quantity

H(z0, r) =

max
|z′−z0|=r

|f(z′)− f(z0)|

min
|z′′−z0|=r

|f(z′′)− f(z0)|

and say that f preserves in�nitesimal circles in D if H(z0, r) → 1 as r → 0. The Mencho� result
states that the preserving in�nitesimal circles at all z0 except for at most a countable set completely
provides that either f or its conjugate is analytic in D. This pure metric condition has been ex-
tended to continuous mappings by Yu. Yu. Trokhymchuk [3] involving the Stoilow theory on interior
mappings.

The classes of mappings presented in the talk can be treated as far advanced extensions of the
Bohr-Mencho�-Trokhymchuk theory on complex plane to more general structures.
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Among all two-dimensional algebras of the second rank with unity e over the �eld of complex
numbers C, we found a semi-simple algebra B0 := {c1e+ c2ω : ck ∈ C, k = 1, 2}, ω2 = e, containing
bases {e1, e2}, such that B0-valued �analytic� functions Φ(xe1 + ye2) (x, y are real variables) satisfy
the fourth order homogeneous partial di�erential equation of the form:

(
b1
∂4

∂y4
+ b2

∂4

∂x∂y3
+ b3

∂4

∂x2∂y2
+ b4

∂4

∂x3∂y
+ b5

∂4

∂x4

)
u(x, y) = 0, (1)

where complex coe�cients bk ∈ C, k = 1, 5, b5 6= 0, such than the Eq. of characteristics

l (s) := b1s
4 + b2s

3 + b3s
2 + b4s+ b5 = 0, s ∈ C, (2)

has four pairwise di�erent roots (each root is a simple root).
A set of pairs ({e1, e2},Φ), where all real components of Φ satisfy Eq. 1, is described in the

explicit form.
A totalies of �analytic� functions Φ(xe1 + ye2), such that the �rst real component of each of

them satis�es the given solution u of Eq. 1 in the simply-connected bounded domains, are found in
[2, 3, 5, 6].
Particular cases of this research are considered in [1, 2, 3, 4, 5].
The complete statements, proofs and de�nitions are considered in [6].

Acknowledgment. The work is partially supported by the Grant of Ministry of Education and
Science of Ukraine (Project No. 0116U001528).
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The Collatz conjecture is an open problem in number theory stablished in 1937 by Lothar Collatz
and can be stated as follows: If f : N→ N is the function de�ned by:

f(n) =

{
n
2 ;n is even

3n+ 1 ;n is odd

the conjecture says that given n ∈ N, there exists k > 0 such that f (k)(n) = 1 and the only orbit
is {1, 2, 4}
Every topology τ can be seen as a commutative semiring under union and intersection. If τf is

the topology on N given by the open sets as those subset θ of N such that f−1(θ) ⊂ θ, we prove
that the Collatz conjecture is true if and only if τf , viewed as a commutative semiring, is a local
semiring.
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We follow the terminology of [2, 4, 5]. For any positive integer j the semigroup INg[j]
∞ is called

the monoid of co�nite isometries of positive integers with the noise j. It was introduced in [4].
Any inverse semigroup S admits the minimum group congruence Cmg:

aCmgb if and only if there exists e ∈ E(S) such that ea = eb.

Proposition 1. Let γ and δ be elements of the monoid INg[j]
∞ . Then γCmgδ in INg[j]

∞ if and only

if nrγ − ndγ = nrδ − ndδ . Moreover, the quotient semigroup INg[j]
∞ /Cmg is isomorphic to the additive

group of integers Z(+) by the map

πCmg : INg[j]
∞ → Z(+), γ 7→ nrδ − ndδ .

Example 2. We put CINg[j]
∞ = INg[j]

∞ t Z(+) and extend the multiplications from INg[j]
∞ and Z(+)

onto CINg[j]
∞ in the following way:

k · γ = γ · k = k + (γ)πCmg ∈ Z(+), for all k ∈ Z(+) and γ ∈ INg[j]
∞ .

Theorem 3. For any positive integer j every Hausdor� shift-continuous topology τ on INg[j]
∞ is

discrete.

Proposition 4. Let j be any positive integer and INg[j]
∞ be a proper dense subsemigroup of a Haus-

dor� semitopological semigroup S. Then I = S \ INg[j]
∞ is a closed ideal of S.

Theorem 5. Let j be any positive integer and INg[j]
∞ be a proper dense subsemigroup of a Hausdor�

topological inverse semigroup S. Then I = S \ INg[j]
∞ is a topological group.

Corollary 6. Let j be any positive integer and INg[j]
∞ be a proper dense subsemigroup of a Hausdor�

topological inverse semigroup S. Then the group S \ INg[j]
∞ contains a dense cyclic subgroup.

Example 7. Let CINg[j]
∞ be a semigroup de�ned in Example 2. Put M be an arbitrary subset of

{2, . . . , j}. We de�ne the topology τM
lc

on CINg[j]
∞ in the following way:

(i) all elements of the monoid INg[j]
∞ are isolated points in

(
CINg[j]

∞ , τM
lc

)
;

(ii) for any k ∈ Z(+) the family BM
lc

(k) =
{
UMi (k) : i ∈ N

}
, where

UMi (k) = {k} ∪
{
γ ∈ CINg[j]

∞ [M ] : k 4 γ and ndγ > i
}
,

is the base of the topology τM
lc

at the point k ∈ Z(+).

Theorem 8. Let j be any positive integer and INg[j]
∞ be a proper dense subsemigroup of a Hausdor�

locally compact topological inverse semigroup (S, τ). Then (S, τ) topologically isomorphic to the

topological inverse semigroup
(
CINg[j]

∞ , τM
lc

)
for some subset M of {2, . . . , j}.
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Corollary 9. For any positive integer j there exists (j−1)!+1 distinct topologically non-isomorphic

Hausdor� locally compact semigroup inverse topologies on the monoid CINg[j]
∞ .

The obtained results generalize the corresponding results of the papers [1] and [3].
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We introduce algebraic extensions BF
ω of the bicyclic monoid for an arbitrary ω-closed family F

subsets of ω which generalizes the bicyclic monoid, the countable semigroup of matrix units and some
other combinatorial inverse semigroups. It is proven that BF

ω is combinatorial inverse semigroup
and Green's relations, the natural partial order on BF

ω and its set of idempotents are described.
We prove the criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the semigroup BF

ω .
We gave the criteria when the semigroup BF

ω has the identity, and when the semigroup BF
ω is

isomorphic to the bicyclic semigroup or the countable semigroup of matrix units.
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Entropy has been a fundamental concept in the theory of dynamical systems from its beginnings.
Together with the newer concept of mean dimension, these invariants can be related to various
embeddings in shift spaces. An important result from 1970, known as the "variational principle"
relates topological and measurable entropies. Recently various variational principles relating metric
mean dimension and (variants of) measurable entropy have been proven. We will survey some of
these old and new developments. Based on joint work with Adam �Spiewak.
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In the paper [1] a new metrized Lie algebra of fractional integral-di�erential operators has been
introduced and the in�nite hierarchy of Lax type Hamiltonian �ows on its dual space, which is
reduced to the hierarchies of the Lax integrable fractional-di�erential dynamical systems on coad-
joint orbits, has been constructed by use of the Adler-Kostant-Symes Lie-algebraic scheme. In our
report we propose a generalization of the described in [1] Lie-algebraic approach to constructing
of Lax integrable fractional-di�erential dynamical systems, which is based on the central extension
by the Maurer-Cartan 2-cocycle of the mentioned above operator Lie algebra. By means of this
generalized approach we obtain the Lax integrable fractional-di�erential Kadomtsev-Petviashvily
hierarchy, whose quasi-classical approximation leads to the Benney type hydrodynamic systems.
Let us consider the Lie algebra Aα := A0{{Dα, D−α}} (see [1]), which consists of the fractional

integral-di�erential operators in the forms:

aα :=
∑

j∈Z+

ajD
α(mα−j),

where A0 := A{{D,D−1}} is the Lie algebra of integral-di�erential operators, A := W∞2 (R;C)∩
W∞∞ (R;C), Dα : A→ A is a Riemann-Liouville fractional derivative, α ∈ C\Z, Reα 6= 0, mα ∈ Z+

and aj ∈ A0, j ∈ Z+, and possesses the standard commutator [., .] and invariant with respect to
this commutator scalar product:

(aα, bα) :=

∫

R
resD (resDα (aα ◦ bαD

−α))dx,

where resDα denotes a coe�cient at D−α for any fractional integral-differential operator as well as
resD denotes a coe�cient at D−1 for any integral-di�erential operator. The Lie algebra Aα allows
the splitting into the direct sum of its two Lie subalgebras Aα = Aα,+ ⊕ Aα,−, where Aα,+ is the
Lie subalgebra of the formal power series by the operator Dα.
One parameterizes the Lie algebra A0 by the variable y ∈ S1 and constructs the central extension

Âα := Āα ⊕ C of the Lie algebra Āα :=
∏
y∈S1 Aα by the Maurer-Cartan 2-cocycle ω2(., .) on Āα

with the commutator:

[(aα, d), (bα, e)] = ([aα, bα], ω2(aα,bα)), (aα, d), (bα, e) ∈ L̂α, (1)

[aα, bα] = aα ◦ bα − bα ◦ aα, ω2(aα, bα) :=

∫

S1

(aα, ∂bα/∂y)dy.

The invariant with respect to the commutator (1) scalar product on Âα is given by the relationship:

((aα, d), (bα, e)) =

∫

S1

(aα, bα)dy + ed.

The Lie-Poisson bracket, deformed by the space endomorphism R = (P+−P−)/2 : Āα → Āα, takes
the form:

{γ, µ}R(l̃α) = (l̃α, [R∇γ(l̃α),∇µ(l̃α)] + [∇γ(l̃α),R∇µ(l̃α)])+
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+cω2(R∇γ(l̃α),∇µ(l̃α)) + cω2(∇γ(l̃α),R∇µ(l̃α)),

where γ, µ ∈ D(Ā∗α) are smooth by Frechet functionals on Ā∗α ' Āα, l̃α ∈ Ā∗α, c ∈ C, P± being
projectors on Aα,±, and generate the in�nite hierarchy of Lax type Hamiltonian �ows:

∂l̃α/∂tj = [(∇γj(l̃α))+, l̃α − c∂/∂y], (l̃α, c) ∈ L̂α
∗
, j ∈ N, (2)

by means of the Casimir invariants γj ∈ I(Ā∗α), j ∈ N, as Hamiltonians. The Casimir invariants
satisfy the relationship:

[l̃α − c∂/∂y,∇γj(l̃α)] = 0,

and can be found in the forms:

γj(l̃α) =

∫

y∈S1

Tr(l̃0αD
jα)dy, j ∈ N.

Here the coe�cients of the operator l̃0α := Djα +
∑

k≤j−1 ĈkD
kα, k ∈ Z, are such that dĈk/dx =

0 = dĈk/dtj , j ∈ N, and obey the equality:

(l̃α − c∂/∂y) ◦ Φ = Φ ◦ (l̃0α − c∂/∂y), Φ = 1 +
∑

r∈N
ΦrD

−rα.

As an example, one studies the reduction of the hierarchy (2) on the coadjoint orbit related with
the element

l̃α = D2α +Dαv̂ + v̂Dα + û ∈ Ā∗α,
where û, v̂ ∈ Ā0, when c = 1. Looking for the gradients of the Casimir invariants in the forms
∇γj(l̃α) = Dmα +

∑
k≤j−1 âk,jD

kα, m ∈ Z+, k ∈ Z, one obtains the hierarchy of fractional-
di�erential dynamical systems such as

dû/dt1 = ûy + [v̂, û], dû/dt2 = ûy,

d(v̂ +Dαv̂D−α)/dt1 = [Dα, û− v̂2]D−α, d(v̂ +Dαv̂D−α)/dt2 = v̂y,

dû/dt3 = f̂y + [f̂ , û]

d(v̂ +Dαv̂D−α)/dt3 = q̂y + ([q̂Dα, û] + [Dαû+ v̂Dαv̂, û] + [f̂ , v̂Dα +Dαv̂])D−α,

[q̂, D2α] = Dα[Dα, û− v̂2],

[f̂ , D2α] = −(v̂yD
2α +Dαv̂yD

α +D2αv̂y)− [v̂D2α +D2αv̂, û]− [Dαû, v̂Dα +Dαv̂]−
−[ûDα, Dαv̂]− [v̂, Dαv̂2Dα]− [q̂Dα, v̂Dα +Dαv̂],

..... . (3)

The gradients of corresponding Casimir invariants are written as

∇γ1(l̃α) = Dα + v̂ +
∑

k≤0
âk,1D

kα,

∇γ2(l̃α) = D2α + (v̂ +Dαv̂D−α)Dα + û+
∑

k≤0
âk,2D

kα,

∇γ3(l̃α) = D3α + (v̂ +Dαv̂D−α +D2αv̂D−2α)D2α + b̂Dα + f̂ +
∑

k≤0
âk,3D

kα, ..... ,

where b̂ = û+DαûD−α + v̂Dαv̂D−α + q̂. The third system in the hierarchy (3) can be considered
as a fractional-di�erential analog of the Kadomtsev-Petviashvily equation.
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The theory of equations with variational (functional) derivatives is a fairly extensive area of
mathematics. This class of equations has numerous applications in statistical physics, quantum
�eld theory, hydromechanics and other �elds. The theory of variational derivatives, di�erential and
integro-di�erential equations with variational derivatives is quite fully stated, for example, in the
monographs [1�3] and the works [4�10].
The problems that are formulated and investigated in this area of mathematics are similar to the

problems considered in the case of ordinary and partial di�erential equations. Explicit formulas for
solving equations with variational derivatives are known only in a few cases. This applies mainly
to the set of linear equations [5�8]. Therefore, the main methods for solving such equations are
approximate.
The problem of an approximate solution of equations with variational derivatives is not su�ciently

studied. When solving this class of problems, it may be useful to apply methods that take into
account the given initial and boundary values. In particular, in the Cauchy problem for an equation
of the n-th order, the desired functional F (x) can be approximately found from the values of the
functional F (x0) and its variational derivatives up to the (n− 1)-th order, which are known at the
point x0(t). For this, it is natural to use the operator interpolation apparatus [11, 12]. Consider
one of the ways for the approximate solution of equations with variational derivatives, based on
interpolation of the functional included in the equation.
We formulate the de�nition of the variational derivative for functionals de�ned on sets of functions

[9]. Let X be a linear space of real functions de�ned on a segment [a, b] of the real axis R, and F
be an operator or functional given on the X.
The k-th order Gateaux di�erential δkF [x;h1, h2, ..., hk] (k ∈ N) of the mapping F at the point

x ∈ X in the directions h1, h2, ..., hk ∈ X is de�ned by the equality

δkF [x;h1, h2, ..., hk] = lim
λ→0

δk−1F [x+ λhk;h1, h2, ..., hk−1]− δk−1F [x;h1, h2, ..., hk−1]

λ
=

=
∂kF (x+ λ1h1 + λ2h2 + ...+ λkhk)

∂λk · · · ∂λ1

∣∣∣∣
λ1=...=λk=0

, δ0F [x] ≡ F (x) .

If there exists the k-th order Gateaux di�erential δkF [x;h1, h2, ..., hk] (x, hi ∈ X; i = 1, 2, ..., k)
of the functional F (x) at the point x ∈ X in the directions h1, h2, ..., hk ∈ X, that can be represented
as

δkF [x;h1, h2, ..., hk] =

∫

[a,b]k
a (x; t1, ..., tk)h1 (t1) ...hk (tk) dt1...dtk, (1)

where a (x; t1, ..., tk) is some function depending on x = x (s) and variables t1, ..., tk ∈ R, then
a (x; t1, ..., tk) is called the variational derivative of the k-th order of the functional F (x) with

respect to x at the point t = (t1, t2, ..., tk) and denoted by the symbol
δkF (x)

δx(t1) · · · δx(tk)
. Variational

derivatives can be generalized functions and other types of functionals.
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As X, one can choose the space C[a, b] of continuous functions with a uniform norm, the Hilbert
space L2[a, b] or any other space such that the integral on the right-hand side of (1) makes sense.
We give formulas for the exact solution of some of the simplest di�erential equations with varia-

tional derivatives.
For example, for the equation

δF (x)

δx(t)
= 2p (t) cosx (t)

∫ 1

0
p (t) sinx (t) dt,

the solution is the functional F (x) =

(∫ 1

0
p (t) sinx (t) dt

)2

, where p (t) and x (t) are elements of

space C[0, 1].

The functional F (x) =

∫ b

a
p (t) f [x (t)] dt is the solution of the equation

δF (x)

δx(t)
= p (t) f ′ [x (t)] .

The solution of the equation

δF (x)

δx(t)
= p0 (t) ex(t) + p1(t) cosx (t) + p2 (t) sinx (t) + p3 (t)x (t) + p4 (t)

∫ 1

0
p4 (τ)x (τ) dτ

has the form

F (x) =

∫ 1

0

[
p0 (t) ex(t) + p1 (t) sinx (t)− p2(t) cosx (t) +

1

2

(∫ 1

0
p4 (t)x (t) dt

)2
]
p (t) sinx (t) dt,

where p0 (t) (i = 0, 1, ..., 4) are arbitrary functions for which reduced integrals exist.
Next, we consider a di�erential equation of the hyperbolic type with the second-order variational

derivatives:

δ2u (x, y)

δx2 (t)
− a2 (t)

δ2u (x, y)

δy2 (t)
= 0 (x = x (t) ≥ 0, y = y (t) , a (t) 6= 0; t ∈ [a, b] ⊆ R) . (2)

The solution of this equation is the functional

u (x, y) = f1

[∫ b

a
(y (t) + a (t)x (t)) dt

]
+ f2

[∫ b

a
(y (t)− a (t)x (t)) dt

]
, (3)

where f1 (·) �e f2 (·) are any functions that are twice di�erentiable on R. The representation (3) is
an analogue of the classical Dalamber formula.
We give the Hermite interpolation formula H (x, y) with respect to a single node of the second

multiplicity, which is an approximation to the solution u (x, y) of the Cauchy problem for equation
(2) with the initial conditions

u (x0, y) = u0 (y) ,
δu (x0, y)

δx(t)
= u1 (y) , (4)

where u0 (y) and u1 (y) are some functionals de�ned on C[a, b].

Theorem 1. An approximate solution of the Cauchy problem (2), (4) can be represented as

H (x, y) = u0 (y) + u1 (y)

∫ b

a
(x(t)− x0(t)) dt+

1

2
a2 (t)u′′0 (y) [x(t)− x0(t)]2 . (5)

The proof of this theorem is based on a direct veri�cation of the interpolation conditions (4).
Substituting the approximation H (x, y) of the form (5) to the solution u (x, y) of the equation

(2) in the left-hand side of equality (2), we obtain

δ2H (x, y)

δx2 (t)
− a2 (t)

δ2H (x, y)

δy2 (t)
=

55



= −a2 (t)

(
u′′1 (y)

∫ b

a
(x(t)− x0(t)) dt+

1

2
a2 (t)u

(4)
0 (y) [x(t)− x0(t)]2

)
δ2 (t− s) ,

where the delta function δ (t) =

{
0, t 6= 0;

+∞, t = 0.
We note that in the case t 6= s, the value δ (t− s) =

0 and the equality (2) takes place for any (x, y) from the domain of de�nition.
The obtained results can serve as a basis for further research of the theory of di�erential equations

with variational derivatives that is not well developed, and can also be used to construct approximate
interpolation methods for solving some linear and nonlinear di�erential equations with variational
derivatives of the �rst and second order that are found in various applied �elds and mathematical
physics.
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In this paper, we study the properties of the total and mean curvatures of a surface and its
dual image in an isotropic space. We prove the equality of the mean curvature and the second
quadratic forms. The relation of the mean curvature of a surface to its dual surface is found. The
superimposed space method is used to investigate the geometric characteristics of a surface relative
to the normal and special normal.

Consider an a�ne space A3 with the coordinate system Oxyz. Let
→
X(x1, y1, z1) and

→
Y (x2, y2, z2)

be vectors of A3.

De�nition 1. If the scalar product of the vectors
→
Xand

→
Y is de�ned by the formula

{
(X,Y )1 = x1x2 + y1y2 if x1x2 + y1y2 6= 0,

(X,Y )2 = z1z2 if x1x2 + y1y2 = 0,
(1)

then A3 is said to be an isotropic space R2
3. [1, 2]

Geometry in a plane of an isotropic space will be Euclidean if it is not parallel to the oz axis.
When a plane is parallel to oz, the geometry on it will be Galilean.
Since an isotropic space has an a�ne structure, there is an a�ne transformation that preserves

the scalar product by formula (1). This motion of an isotropic space is given by the formula [5]




x′ = x cosα− y sinα+ a
y′ = x sinα+ y cosα+ b
z′ = Ax+By + z + c

(2)

The second sphere is de�ned as a surface with the constant normal curvature. This sphere of the
unit radius has the equation [8]

x2 + y2 = 2z, (3)

we call it the isotropic sphere.
Let a plane π be given in R2

3, which is not parallel to the oz axis of the space. Consider the
section of the isotropic sphere by the plane π and denote it by Γ. Since an isotropic sphere is a
paraboloid of revolution, the section Γ by a plane is a closed curve. It was proved in [2] that Γ is
an ellipse.
Draw tangent planes to isotropic sphere (3) through pointsM ∈ Γ. Denote the set of tangent

planes to points F by {π}.
The following statement holds.

Theorem 2. All planes of the set {π} intersect at one point. [6]
If a plane π0 is given by the equation

z = Ax+By + C, (4)

then the intersection point of the planes of the set {π} will be (A,B,−C).

De�nition 3. The point (A,B,−C) will be called dual to plane (4) with respect to isotropic sphere
(3). [6]
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Let us draw the tangent plane πM to the surface F at the point M(x0, y0, z0). Denote by M∗ the
dual image of the tangent space πM with respect to the isotropic sphere. When the point M ∈ F
changes on the surface F , its dual image describes a surface F ∗.

De�nition 4. . The surface F ∗ is said to be the dual surface to the surface F in an isotropic
space. [6]

When F is given by the equation z = f(x, y), F ∗ has the equations




x∗(u, v) = f ′u(u, v)

y∗(u, v) = f ′v(u, v)

z∗(u, v) = u · f ′u(u, v) + v · f ′u(u, v)− f(u, v)

(5)

Lemma 5. When the total curvature of a surface K = 0, its dual image is a point or a curve.

Theorem 6. The product of the total curvatures of the surface Fand the dual surface F ∗ of the
isotropic space is equal to unity:

K ·K∗ = 1. (6)

Lemma 7. The special mean curvatures of the surfaces, given by the functions
−→
R1(u, v) = fu ·

−→
i +

fv ·
−→
j + fu ·

−→
k and

−→
R2(u, v) = fu ·

−→
i + fv ·

−→
j + fv ·

−→
k , are calculated, respectively, by the formulas

Hm(R1) =
fuvv

(
f2
uu + f2

uv

)
− 2fuuv (fuufuv + fuvfvv) + fuuu

(
f2
uv + f2

vv

)

[f ′′uuf ′′vv − f ′′uv2]2
, (7)

Hm(R2) =
fvvv

(
f2
uu + f2

uv

)
− 2fuvv (fuufuv + fuvfvv) + fuuv

(
f2
uv + f2

vv

)

[f ′′uuf ′′vv − f ′′uv2]2
. (8)

Lemma 8. The mean curvatures of the surfaces, given by the functions
−→
R1(u, v) and

−→
R2(u, v), are

equal to zero.

Lemma 9. The mean curvature and special mean curvature of the dual surface (5) and the surfaces
R1(u, v), R2(u, v) are connected by the equality:

H∗m = H∗ + u ·Hm(R1) + v ·Hm(R2). (9)

Theorem 10. The mean curvatures de�ned with respect to the normal and the special normal are
equal: H∗m = H∗.

Theorem 11. If Ω = 0, then the special total curvature of the surface F ∗ is expressed in terms of
the special total curvatures of the surfaces F , Z1, and Z2.
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Let X be a compact Hausdor� space. By exp X we denote a set of all nonempty closed subsets
of X. A family of sets of the view

O〈U1, ..., Un〉 = {F ∈ exp X : F ⊂
n⋃

i=1

Un, F ∩ U1 6= ∅, ..., F ∩ Un 6= ∅}

forms a base of a topology on exp X, where U1, . . . , Un are open nonempty sets in X. This topology
is called the Vietoris topology. A space exp X equipped with Vietoris topology is called hyperspace
of X. For a compact space X its hyperspace exp X is also a compact space.
Let f : X → Y be continuous map of compacts, F ∈ exp X. We put

(exp f)(F ) = f(F ).

This equality de�nes a map exp f : exp X → exp Y . For a continuous map f the map exp f is
continuous. Really, it follows from the formula [2]

(exp f)−1O〈U1, ..., Um〉 = O〈f−1(U1), ..., f−1(Um)〉
what one can check directly. Note that if f : X → Y is an epimorphism, then exp f is also an
epimorphism.
For a Tychono� space X we put

expβ X = {F ∈ expβX : F ⊂ X}.
It is clear, that expβ X ⊂ exp βX. Consider the set expβ X as a subspace of the space exp βX.

For a Tychono� spaces X the space expβ X is also a Tychono� space with respect to the induced
topology.
For a continuous map f : X → Y of Tychono� spaces we put

expβ f = (expβf)|expβ X
,

where βf : βX → βY is the Stone-C�ech compacti�cation of f (it is unique).
For a Tychono� space X put

exp(Homeo (X)) = {exp(g) : g ∈ Homeo (X)}.
Proposition 1. For an arbitrary Tychono� space X we have

exp(Homeo (X)) ⊂ Homeo (exp(X)).

Note that the inclusion cannot be reversed.
Example 1. Let X = {a, b} be a two-point discrete space. Then exp X is three point discrete

space. There exist only two homeomorphisms of X onto itself: h, h ′ : X → X, de�ned by the
rules h(a) = a, h(b) = b and h ′(a) = b, h ′(b) = a. At the same time exp X has six di�erent
homeomorphisms four of them could not be generated by h and h ′.
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For a topological transformation group (G,X,α) we put

exp(G) = {exp(αg) : g ∈ G},
here αg(x) = g(x).
Let Ug be an open in G neighbourhood of an element g ∈ G. we de�ne a set Uexp(αg) = {exp(αh) :

h ∈ Ug} and put

Bexp(αg) = {Uexp(αg) : Ug ∈ τG},
here τG is the topology on the space G. It is easy to check that the family Bexp(αg) forms a
neighbourhood system of the point exp(αg) ∈ exp(G).

Theorem 1. The set exp(G) is a topological group with respect to the operation exp(αg1) exp(αg2) =
exp(αg1g2). Moreover, exp(αe) is a unit of the group exp(G) and exp(αg)

−1 = exp(αg−1), g ∈ G.
Now for α it is possible to de�ne the action αexp : exp(G)× exp(X)→ exp(X) by the rule

αexp(exp(αg), F ) = exp(αg)(F ).

Proposition 2. For the topological transformation groups (G, X, α), the triple (exp(G), exp(X), αexp)
is a topological transformation groups.

Proposition 3. If the set A ⊂ X is G-invariant, then the set exp(A) is exp(G)-invariant.

Proposition 4. For a topological transformation group (G,X,α), we have

kerαexp = exp(kerα).

Here kerαexp = {exp(αg) ∈ exp(G) : exp(αg)(F ) = F, ∀F ∈ exp(X)}, exp(kerα) = {exp(αg) ∈
exp(G) : g ∈ kerα}.
Proposition 4 immediately implies

Corollary 5. The action αexp is e�ective if and only if the action α is e�ective.

Note that for the transitive action α of the group G on the space X, the action αexp induced
from α may not be transitive.

Example 6. Let X = {x1, x2, x3} be the discrete topological space (all three points are di�erent).
Let

G =

{(
1 2 3
1 2 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}

� the discrete topological group of permutations of the index set {1, 2, 3}. The action α : G×X → X
of the group G on the space X is de�ned by the rule α(g, xi) = xg(i). Then α is a transitive action.
Moreover, αg(xi) = xg(i). It is clear that exp(αg)({x1, x2, x3}) = {x1, x2, x3} for each g ∈ G.
Thus, for no closed subset F ⊂ X there is no element exp(αg) of the group exp(G) for which
exp(αg)(F ) = Φ, here Φ = {x1, x2, x3}, F 6= Φ. Therefore, the action αexp is not transitive.

Example 6 shows that the action of the group exp(G) on the space exp(X) may not be free,
although the action of the group G on the space X is free. But, nevertheless, the following is true.

Proposition 7. Let X = {x1, . . . , xn} be a �nite discrete space, G an arbitrary permutation group
(supplied by the discrete topology) of the set X. Then, for each free action α of the group G on
the space X, the corresponding action αexp of the group exp(G) on the space exp(X) is semi-free.
In this case, the only point in the space exp(X) that remains motionless under the action of all
elements of exp(G) is the set {x1, . . . , xn}.
It is clear that if G is a compact group, then exp(G) is also a compact group.
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Theorem 8. The action αexp : exp(G) × exp(X) → exp(X) of the compact group exp(G) on the
space exp(X) is a closed map.

The next statement follows from Theorem 8.

Corollary 9. If G is a compact group and X is some G-space, then for any closed set A ⊂ exp(X)
the set exp(G)(A) is closed in exp(X) and for compact A the set exp(G)(A) is compact.

Theorem 10. If f : X → Y is an equivariant map of one G-space to another, then exp(f) : exp(X)→
exp(Y ) is also an equivariant map of exp(G)-spaces.

The normality of the functor exp and Theorem 10 imply

Corollary 11. If f : X → Y is an equivalence of G-spaces X and Y , then exp(f) : exp X → exp Y
is an equivalence of exp(G)-spaces exp X and exp Y .
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This article deals with the construction of the Carleman function for matrix factorizations of the
Helmholtz equation in a multidimensional domain.
It is known that the Cauchy problem for elliptic equations is unstable relatively small change in

the data, i.e., is incorrect (Hadamard's example). In unstable problems the image of the operator
is not closed, therefore the solvability condition can not be written in terms of continuous linear
functionals. Thus, in the Cauchy problem for elliptic equations with data on a part of the boundary
of the region, the solution is usually unique, the problem is solvable for an everywhere dense set of
data, but this set not closed. Consequently, the theory of solvability of such problems is essentially
It is more di�cult and deeper than the theory of solvability of the Fredholm equations. The �rst
results in this direction appeared only in the mid-1980s in the works of L.A. Aizenberg, A.M.
Kytmanov, N.N. Tarkhanov (See, for instance [1]).
Let x = (x1, ..., xm), y = (y1, ..., ym) be are points of the Euclidean space Rm and G ⊂ Rm be

a bounded simply-connected domain with piecewise smooth boundary consisting of the plane T :
ym = 0 and of a smooth surface S lying in the half-space ym > 0, that i.e., ∂G = S

⋃
T .

We consider in the domain G a system of di�erential equations

D

(
∂

∂x

)
U(x) = 0, (1)

where D

(
∂

∂x

)
is the matrix of �rst-order di�erential operators.

We denote by A(G) the class of vector functions in a domain G continuous on G = G
⋃
∂G and

satisfying system (1).
We de�ne the function Φ(y, x;λ) at y 6= x by the following equalities:

Φ(y, x;λ) =
1

cmK(xm)

∂k−1

∂sk−1

∞∫

0

Im

[
K(w)

w − xm

]
uI0(λu)√
u2 + α2

du, m = 2k, k ≥ 1, (2)

Φ(y, x;λ) =
1

cmK(xm)

∂k−1

∂sk−1

∞∫

0

Im

[
K(w)

w − xm

]
cos(λu)√
u2 + α2

du, m = 2k + 1, k ≥ 1, (3)

where
at m = 2k, k ≥ 1; c2 = 2π, cm = (−1)k2−k(m− 2)πωm(k − 1)!, I0(λu) = J0(iλu)−is the Bessel

function of the �rst kind of zero order;
at m = 2k + 1, k ≥ 1; cm = (−1)k2−k(2k − 1)!(m − 2)πωm, ωm− the area of a unit sphere in

space Rm.
In the future, using formulas (2) and (3), we will construct the Carleman matrix for matrix

factorizations of the Helmholtz equation in multidimensional bounded domain and based on it we
will �nd an approximate solution to the Cauchy problem in explicit form, using the methodology of
previous works (See, for instance [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17] and [18]).
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Measuring the rate of convergence in the Birkho� ergodic theorem

Alexander Kachurovskii
(Sobolev Institute of Mathematics, Novosibirsk, Russia)
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There are two di�erent approaches to the measuring of the rate of convergence in Birkhof's
ergodic theorem; see the discussion in [1].
The �rst one, closely related with probabilities of large deviations, was studied in [2]. Now

this approach is well developed. There were obtained estimates of the rate of convergence in the
Birkho� ergodic theorem for many classes of dynamical systems popular in applications, including
some well-known billiards and Anosov systems [3].
The second approach (pointwise rate of convergence) was studied in [1] and [4], and many

interesting questions still are open here.
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Enumeration of topologically non-equivalent functions with one
degenerate saddle critical point on triple torus
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Let (N, ∂N) be a smooth surface with the edge ∂N (∂N can be empty). Let C∞(N) denote the
space of in�nitely di�erentiable functions on N with edge ∂N = ∂−N ∪ ∂+N , all critical points of
which are isolated and lie in the interior of N , and, furthermore, on the connected components of
the edge ∂−N (∂+N) the functions from C∞(N) take the same values a (b accordingly).
Two functions f1 and f2 from the space C∞(N) are called topologically equivalent if there are

homeomorphisms h : N → N and h′ : R1 → R1 (h′ preserves orientation) such that f2 = h′◦f1◦h−1.
If h preserves of the orientation, the functions f1 and f2 are called topologically conjugated (eg. [2])
or O-topologically equivalent (eg. [6]).
It is known [2] that a function f ∈ C∞(N), in a certain neighborhood of its isolated critical

point x ∈ N (which is not a local extremum) for which the topological type of level lines changes
in passing through x, is reduced by a continuous change of coordinates to the form f = Rezn + c,
n ≥ 2 (are called ¾essentially¿ critical point) or f = Rez if the topological type of level lines does
not change in passing through x. The number of essentially critical points xi of the function f ,
together with the values of ni (exponents in there presentation f = Rezni + ci in the neighborhoods
of the critical points xi), are called the topological singular type of the function f .
The problem of the topological equivalence of functions from the class C∞(N) with the �xed

number of critical points was completely solved by V.V. Sharko in [3] and it was established that
a �nite number of topologically nonequivalent functions of this class exist. However, it should
be noted that the task about calculation of topologically non-equivalent functions with the �xed
topological singular type is rather complicated and is still unsolved.
When considering functions from the class C(Mg) ⊂ C∞(N) that possess only one essen-

tially critical point x0 (degenerate critical point of the saddle type) in addition to local maxima and
minima on oriented surface Mg of genus g ≥ 0, then the problem of counting the number of such
non-equivalent functions is greatly simpli�ed. It is well known [2] that ∀f ∈ C(Mg) the Poincare in-

dex of a critical point x0, is equal indf (x0) = 1− n, where n = 2g − 1 + λ and λ is a total number
of local maxima and minima.
Let Cn(Mg) be a class of functions from C(Mg) which, in addition to local maxima and minima,

have only one essentially critical point, whose the Poincare index is equal (1−n). Denote the class of
functions from C(Mg) that possess one essentially critical point, k local maxima and l local minima
by Ck,l(Mg). Then it is clear that ∀f ∈ Ck,l(Mg) n = 2g − 1 + k + l.
In the general case, for natural g, k, l (or k, l, and n = 2g+ k+ l− 1), the problem of calculating

the number of topologically non-equivalent functions from the class Ck,l(Mg) also has proved to be
quite a di�cult and unsolved problem to date.
The task of calculating the number of topologically non-equivalent functions from the class

C1,1(Mg) (for genus g ≥ 1) was completely solved in [4]. In [5], for natural k and l solved completely
the problems of calculating the numbers O-topologically and topologically non-equivalent functions
from the class Ck,l(M0) (on two-dimensional sphere).
In [6], [7] solved completely the problems of calculating the numbers O-topologically and topo-

logically non-equivalent functions from the class C1,n−2(M1) and C1,n−4(M2) accordingly.
In general case, for functions from the class C1,n−2g(Mg), the task is also still unsolved.
By using the results of [1] we can establish the validity of the following statement
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Theorem 1. For natural n ≥ 7 the number d∗(n) of O-topologically non-equivalent functions from
the class C1,n−6(M3) can be calculated by the relation

d∗(n) =
1

n


d(n) +

∑

j|n, j∈{2;3;4;6;7;8;9;12}
φ(j) · ρ

(
n, nj

)

 , (1)

where: φ(q) is the Euler totient function;

d(n) =
1

72
C8
n+1 · (9n4 − 18n3 − 57n2 + 34n+ 80); (2)

∀j ∈ N : n
j /∈ N the value ρ

(
n, nj

)
≡ 0; ∀j ∈ {2; 3; 4; 6; 7; 8; 9; 12} : n

j ∈ N the value of

ρ
(
n, nj

)
can be calculated by the relations

ρ
(
n, n12

)
= n

12 , ρ
(
n, n9

)
= 2n

9 , ρ
(
n, n8

)
= n

4 , ρ
(
n, n7

)
= 5n

7 , ρ
(
n, n4

)
= n(n−4)(n+40)

384 ,

ρ
(
n, n6

)
= n(n−6)

72 , ρ
(
n, n3

)
= n(n−3)(n−6)(3n+29)

648 , ρ
(
n, n2

)
= n(n−2)(n−4)(n−6)(37n2+294n−2320)

46080 .
(3)

n d(n) d∗(n) n d(n) d∗(n)
7 180 30 19 1 801 329 010 94 806 790
8 3 044 385 20 3 600 529 450 180 028 084
9 26 060 2 900 21 6 925 187 830 329 770 930
10 152 900 15 308 22 12 869 925 310 584 999 362
11 696 905 63 355 23 23 190 544 696 1 008 284 552
12 2 641 925 220 242 24 40 637 416 600 1 693 230 295
13 8 691 683 668 591 25 69 427 501 000 2 777 100 040
14 25 537 655 1 824 311 26 115 901 728 800 4 457 765 752
15 68 396 900 4 559 818 27 189 426 912 675 7 015 811 753
16 169 537 940 10 596 558 28 303 616 322 295 10 843 450 498
17 393 481 660 23 145 980 29 477 960 911 025 16 481 410 725
18 862 928 092 47 941 370 30 739 984 318 125 24 666 159 267

Table 1.1. Number d∗(n) of O-topologically non-equivalent functions from the class C1,n−6(M3)
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On some properties of moduli of smoothness of conformal mapping
of simply connected domains

Olena Karupu
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Let consider a function realizing homeomorphism of the closed unit disk onto the closure of simply
connected domain in the complex plane bounded by a smooth Jordan curve conformal in the open
unit disk. Let suppose that boundary of this domain is characterized by the angle between the
tangent to the curve and the positive real axis considered as the function of the arc length on the
curve.
O. D. Kellogg in 1912 proved the theorem in which it had been established that if this angle

function satis�es Holder condition, then the derivative of the function realizing mapping of unit disk
onto the closure of the given domain satis�es Holder condition with the same index. Connection
between properties of the boundary of the domain and properties of the considered function was
investigated in works by numerous authors: S. E. Warshawski, J. L. Geronimus, S. J. Alper, R.
N. Kovalchuk, L. I. Kolesnik, P. M. Tamrazov (more detailed see [1�3], [5] and [6]). Some close
problems were investigated by V. A. Danilov, E. P. Dolzenko, E. M. Dynkin, N. A. Shirokov, S. R.
Bell and S. G. Krantz, V. V. Andrievskii, V. I. Belyi, B. Oktay, D. M. Isra�lov and others (more
detailed see [3�5] and [7]).
Certain results in terms of moduli of smoothness of di�erent types (uniform curvilinear, arith-

metic, local and integral moduli of smoothness of arbitrary order) were received by author. In
particular, some estimates for integral moduli of smoothness were considered in [4�6].
Let ωk,z(f(z), δ) be a noncentralized local arithmetic modulus of smoothness of order k (k ∈ N)

of the function w = f(z) at a point z on the curve γ [1]. Let consider the integral modulus of
smoothness of order k for the function w = f(z) on the curve γ introduced in [2] by the formula

ω̂k(f(z), δ) =

(
∫
γ

[ωk,z(f(z), δ)]p dλ(z)

}1/p

, 1 ≤ p < +∞, k ∈ N, where λ = λ(z) is the linear

Lebesgue's measure on the curve.
Let G1 and G2 be the simply connected domains in the complex plane bounded by the smooth

Jordan curves Γ1 and Γ2. Let τ1(s1) be the angle between the tangent to Γ1 and the positive real
axis, s1(z) be the arc length on Γ1. Let τ2(s2) be the angle between the tangent to Γ2 and the
positive real axis, s2(w) be the arc length on Γ2. Let w = f(z) be a homeomorphism of the closure
G1 of the domain G1 onto the closure G2 of the domain G2, conformal in open domain G1.

Theorem 1 ([5]). If integral moduli of smoothness ω̂k(τ1(s1), δ) and ω̂k(τ2(s2), δ) of order k (k ∈
N) for the functions τ1(s1) and τ2(s2) satisfy Holder condition ω̂k(τ1(s1), δ) = O(δα) (δ → 0)
and ω̂k(τ2(s2), δ) = O(δα) (δ → 0), with the same index α, 0 < α < k, then integral modulus
of smoothness ω̂k(f

′(z), δ) of the derivative of the function f(z) on Γ1 satis�es Holder condition
ω̂k(f

′(z), δ) = O(δα) (δ → 0) with the same index α.

Theorem 2 ([6]). If integral moduli of smoothness ω̂k(τ1(s1), δ) and ω̂k(τ2(s2), δ) of order k (k ∈ N)
for the functions τ1(s1) and τ2(s2) satisfy condition ω̂k(τ1(s1), δ) = O(δk log 1

δ ) (δ → 0) and

ω̂k(τ2(s2), δ) = O(δk log 1
δ ) (δ → 0), then integral modulus of smoothness ω̂k(f

′(z), δ) of the de-

rivative of the function f(z) on Γ1 satis�es condition ω̂k(f
′(z), δ) = O(δk log 1

δ ) (δ → 0).

Theorem 3. Let integral moduli of smoothness ω̂k(τ1(s1), δ) and ω̂k(τ2(s2), δ) of order k (k ∈
N) for the functions τ1(s1) and τ2(s2) satisfy conditions ω̂k(τ1(s1), δ) = O(ω(δ)) (δ → 0) and
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ω̂k(τ2(s2), δ) = O(ω(δ)) (δ → 0), where ω(δ) is normal majorant satisfying the condition
l∫

0

ω(t)
t dt <

+∞. Then integral modulus of smoothness ω̂k(f(z), δ) of the function f(z) on Γ1 satis�es the
condition ω̂k(f(z), δ) = O(σ(δ)) (δ → 0), where σ(δ) is some integral majorant.
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Integration over non-recti�able curves: spirals of high torsion

David B. Katz
(Moscow, Udaltsova, 16, 119415)
E-mail: katzdavid89@gmail.com

The presentation is devoted to some new results related to the classical problem of complex
analysis - the Riemann boundary value problem. We, however, consider it on a non-recti�able
curve and pay considerable attention to the geometric features of the curve. In this case, we will
talk about spirals, which we will classify depending on the speed of it's twisting. We consider the
geometric properties of arcs in the neighbourhood of their ends.
Let us consider �rst a well known boundary-value problem of complex analysis � so called Riemann

problem on a simple Jordan arc (see, for instance, [1, 6, 3]).
Given a directed Jordan arc Γ in the complex plane C with beginning and end at points a1 and

a2 relatively, and two functions G(t), g(t), t ∈ Γ. Find all holomorphic in C\Γ functions Φ(z) which
vanish at ∞ and have boundary limits Φ±(t) from the left and from the right correspondingly at
any point t ∈ Γ \ {a1, a2} such that

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ Γ \ {a1, a2}. (1)

In addition, the desired function Φ must satisfy certain conditions on its growth at the end points
a1,2.
In numerous classical works (see [1, 6, 3] and many other) the solutions of this problem are

obtained in terms of Cauchy type integrals. Particularly, a solution of so called jump problem

Φ+(t) = Φ−(t) + g(t), t ∈ Γ \ {a1, a2}, (2)

on piecewise - smooth arc Γ is representable as the Cauchy type integral

Φ(z) =
1

2πi

∫

Γ

g(t) dt

t− z , z 6∈ Γ. (3)

As a result, in all classical works on this problem the boundary Γ is assumed recti�able, although
the formulation of the problem does not imply this restriction. It keeps the sense for non-recti�able
arcs, too. The Riemann boundary-value problem for non-recti�able boundaries was solved �rst in
the papers [4, 5, 6, 7].
We introduce the concept of torsion of arc Γ [8]. The torsion of arc Γ at point aj , j = 1, 2 is a

value

τj := inf

{
p > 0 :

∫∫
|KΓ(z)|1/pdx dy <∞

}
,

where integral is taken over a neighborhood of aj . If τj < 1, then we say that the arc has moderate
torsion at point aj , otherwise its torsion is high. This value characterizes the rate of curling of Γ
around the point aj .
As it appears, the torsion concept is very closely connected with the integrator concept that we

introduced earlier - and this allows us to get some new results in this geometric terms.
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On real Σ∗-algebras of operators

Alexander A. Katz
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Real Σ∗-algebras of operators are introduced and their connections with (complex ) Σ∗-algebras
and real von Neumann algebras are discussed.
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Consider the heat equation

wt =
1

ρ
(kwx)x + γw, x ∈ (0,+∞), t ∈ (0, T ), (1)

controlled by the Dirichlet boundary condition

w(0, ·) = u, t ∈ (0, T ), (2)

under the initial condition

w(·, 0) = w0, x ∈ (0,+∞), (3)

where T = const > 0; ρ, k, γ, w0 are given functions; u ∈ L∞(0, T ) is a control. We assume
ρ, k ∈ C1[0,+∞), ρ > 0 and k > 0 on [0,+∞), (ρk) ∈ C2[0,+∞), (ρk)′(0) = 0, and

σ(x) =

∫ x

0

√
ρ(µ)/k(µ) dµ→ +∞ as x→ +∞.

In addition, we assume

(P (k, ρ)− γ) ∈ L∞(0,+∞)
⋂
C1[0,+∞) and σ

√
ρ

k
(P (k, ρ)− γ) ∈ L1(0,+∞),

where P (k, ρ) = 1
4

√
k
ρ

(√
k
ρ

(
k′
k + ρ′

ρ

))′
+
(

1
4

√
k
ρ

(
k′
k + ρ′

ρ

))2
.

Control system (1)�(3) is considered in modi�ed Sobolev spaces. Denote η = (kρ)1/4, θ =
(
k
ρ

)1/4
,

Dηθ = θ2
(
d
dx + η′

η

)
. Denote also R+ = (0,+∞). For p = 1, 2, denote

H̃0
+ =

{
ϕ ∈ L2

loc(R+) |
(η
θ
ϕ
)
∈ L2(R+)

}
, H̃p

+ =
{
ϕ ∈ H̃p−1

+ |
(η
θ
Dpηθϕ

)
∈ L2(R+) and ϕ(0) = 0

}
,

with the norm

[]ϕ[]s+ =

√√√√
s∑

m=0

(∥∥∥η
θ

(
Dmηθϕ

)∥∥∥
L2(R+)

)2

, ϕ ∈ H̃s
+, s = 0, 1, 2,

and the dual spaces H̃−s+ =
(
H̃s

+

)∗
with the norms associated with the strong topology of these

spaces, s = 0, 1, 2.

We suppose
(
d
dt

)p
w : [0, T ]→ H̃−2p

+ , p = 0, 1, and w0 ∈ H̃0
+ in system (1)�(3).
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Let T > 0 and w0 ∈ H̃0
+. By RT (w0), denote the set of all states wT ∈ H̃0

+ for which there exists

a control u ∈ L∞(0, T ) such that for the solution w to system (1)�(3) we have w(·, T ) = wT .

De�nition 1. A state w0 ∈ H̃0
+ is said to be controllable to a state wT ∈ H̃0

+ with respect to

system (1)�(3) in a given time T > 0 if wT ∈ RT (w0).

De�nition 2. A state w0 ∈ H̃0
+ is said to be null-controllable with respect to system (1)�(3) in a

given time T > 0 if 0 ∈ RT (w0).

De�nition 3. A state w0 ∈ H̃0
+ is said to be approximately controllable to a state wT ∈ H̃0

+ with

respect to system (1)�(3) in a given time T > 0 if wT ∈ RT (w0), where the closure is considered in

the space H̃0
+.

Consider also control system with the simplest heat operator (the case ρ = k = 1, γ = 0)

zt = zyy, y ∈ (0,+∞), t ∈ (0, T ), (4)

z(0, ·) = v, t ∈ (0, T ), (5)

z(·, 0) = z0, y ∈ (0,+∞), (6)

where v ∈ L∞(0, T ) is a control,
(
d
dt

)m
z : [0, T ]→ H̃−2m

+ , m = 0, 1, w0 ∈ H̃0
+ = L2(R+). Here

H̃s
+ =

{
ϕ ∈ L2(R+) |

(
∀k = 0, s ϕ(k) ∈ L2(R+)

)
and

(
∀k = 0, s− 1 ϕ(k)(0+) = 0

)}
, s = 0, 1, 2,

with the norm

‖ϕ‖s+ =

√√√√
s∑

k=0

(
s

k

)(∥∥ϕ(k)
∥∥
L2(R+)

)2
, ϕ ∈ H̃s

+, s = 0, 1, 2,

and H̃−s+ =
(
H̃s

+

)∗
with the norms associated with the strong topology of these spaces, s = 0, 1, 2.

Controllability problems for system (4)�(6) were investigated in [1].

To study controllability problems for system (1)�(3), we use the transformation operator T̃ :

H̃−2
+ → H̃−2

+ . It was introduced and studied in [2]. In particular, it has been proved therein that T̃
is a continuous one-to-one mapping between the spaces H̃s and H̃s, s = −2,−1, 0.

In the present talk, we prove that the transformation operator T̃ is one-to-one mapping between
the sets of the solutions to system (4)�(6) and to system (1)�(3). The application of the operator

T̃ allows us to conclude that the control system (1)�(3) replicates the controllability properties of
the control system (4)�(6) and vice versa. A relation between controls u and v is also found. Thus,
we obtain the following main results.

Theorem 4. If a state w0 ∈ H̃0
+ is null-controllable with respect to system (1)�(3) in a time T > 0,

then w0 = 0.

Theorem 5. Each state w0 ∈ H̃0
+ is approximately controllable to any target state wT ∈ H̃0

+ with
respect to system (1)�(3) in a given time T > 0.
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Perfect metrizability of the functor of idempotent measures

Kholturayev Kholsaid
(Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 39, Khari Niyozi str.,

Tashkent, 100000, Uzbekistan)
E-mail: xolsaid_81@mail.ru

Let R be the real line. The set R ∪ {−∞} considered with operations: addition ⊕ and multipli-
cation � de�ned as u⊕ v = max{u, v} and u� v = u+ v, denotes by Rmax. Let X be a compact
Hausdor� space, C(X) the algebra of continuous functions ϕ : X → R with the usual algebraic
operations. On C(X) the operations ⊕ and � we de�ne as ϕ ⊕ ψ = max{ϕ, ψ}, ϕ � ψ = ϕ + ψ,
λ� ϕ = ϕ+ λX here ϕ, ψ ∈ C(X), λ ∈ R. Recall [1] that a functional µ : C(X)→ R is said to be
an idempotent probability measure on X, if: 1) µ(λX) = λ for each λ ∈ R; 2) µ(λ� ϕ) = µ(ϕ) + λ
for all λ ∈ R, ϕ ∈ C(X); 3) µ(ϕ ⊕ ψ) = µ(ϕ) ⊕ µ(ψ) for every ϕ, ψ ∈ C(X). The set of all

idempotent probability measures on X we denote by I(X). Consider I(X) as a subspace of RC(X).
The topological space I(X) is compact [1]. For a given map f : X → Y of compact Hausdor�
spaces the map I(f) : I(X)→ I(Y ) de�nes by the formula I(f)(µ)(ϕ) = µ(ϕ ◦ f), µ ∈ I(X), where
ϕ ∈ C(Y ). The construction I is a normal covariant functor, acting in the category of compact
Hausdor� spaces and their continuous maps. For µ ∈ I(X) we may de�ne the support of µ :
suppµ = ∩{A ⊂ X : Ā = A, µ ∈ I(A)}. For a point x ∈ X by the rule δx(ϕ) = ϕ(x), ϕ ∈ C(X),
we de�ne the Dirac measure δx supported on the singleton {x}.
Put

US(X) =
{
λ : X → [−∞, 0]

∣∣ λ is upper semicontinuous and there exists a

x0 ∈ X such that λ(x0) = 0
}
.

Then we have

I(X) =

{⊕

x∈X
λ(x)� δx : λ ∈ US(X)

}
.

We de�ne a subset

Iω(X) =

{⊕

x∈X
λ(x)� δx : λ ∈ US(X), |{x ∈ X : λ(x) > −∞}| <∞

}
⊂ I(X).

Iω(X) is everywhere dense in I(X) [1, 2]. Put

ρ2(µ1, µ2) = inf





∑
(x, y)∈supp ξ

eλ1(x)+λ2(y) · ρ(x, y)

∑
x∈suppµ1

eλ1(x) · ∑
y∈suppµ2

eλ2(y)
: ξ ∈ Λ1 2




,

where µi =
⊕
x∈X

λi(x)� δx ∈ Iω(X), i = 1, 2. Further, for every pair µ, ν ∈ I(X) take consequences

{µn}, {νn} ⊂ Iω(X) such that lim
n→∞

µn = µ and lim
n→∞

νn = ν, and put

ρI(µ, ν) = lim
n→∞

ρ2(µn, νn).

The function ρI is a metric on I(X) generating the pointwise convergence topology on I(X) and
the restriction of which coincides with the metric ρ on X.
Consider a system ψ consisting of all mapgs ψX : I2(X)→ I(X), acting as the following. Given

M ∈ I2(X) put ψX(M)(ϕ) = M(ϕ), where for any function ϕ ∈ C(X) the function ϕ : I(X)→ R
de�nes by the formula ϕ(µ) = µ(ϕ). Fix a compactum X and for a positive integer n put ψn+1, n =
ψIn−1(X) : In+1(X)→ In(X). Note that ψn+1, n ◦ ηn, n+1 = IdIn(X).
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Lemma 1. ψ1, 0 : (I2(X), ρI2)→ (I(X), ρI) is a non-expanding map.

Lemma 2. For each N ∈ ψ−1
1, 0(µ) we have ρI(µ, δx0) = ρI2(δδx0

, N).

Lemma 3. If ρI(µ, η0, 1(X)) ≥ ε then ρI2(I(η0, 1)(µ), η1, 2(I(X))) ≥ ε.
Theorem 4. The functor I is perfect metrizable.
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In this paper it is considered quasiareal deformation of surfaces, which we will call also brie�y
QA-deformation. Quasiareal deformation is understood as an in�nitesimal deformation of the �rst
order with the given law of changing the element of area of a surface in Euclidean three-space.
Let U

(
x1, x2

)
be a �eld of velocities of the points of the surface r = r

(
x1, x2

)
at the initial

moment of the deformation, such that U = Uαrα +U0n, where ri, n, i = 1, 2, are the basis vectors.
The fundamental equations of the quasiareal in�nitesimal deformation, which are expressed in terms
of the components of the partial derivatives of the �eld U, are derived in [2].
It has been established: in order that the �eld U ∈ C1 be a deforming �eld of the quasiareal in�n-

itesimal deformation it is necessary and su�cient that the components Uα, U0 satisfy the equation

Uα,α − 2HU0 = −2µ, (1)

where the function µ expresses the law of changing the element of area.
It is evident, that the class of the QA-deformation is very wide since one di�erential equation (1)

contains four unknown functions. It is expedient to study such deformation under the additional
geometrical or mechanical conditions. For example, for the surface of positive Gauss curvature (K >
0) on the condition that δn = 0 under the quasiareal in�nitesimal deformation we have additional
elliptic partial di�erential equation of the second order with respect to the normal component of
the deforming �eld

dαβU0
α,β −

Kα

K
dαβU0

β + 2HU0 = 2µ. (2)

The Riemann domain T has been described, in which the regular solution of the equation (2)
exists for the regular surfaces of positive Gauss curvature, this solution is a continuous, non-zero
everywhere in closed domain T . This condition is a su�cient sign of the existence and uniqueness
of the solution of the Dirichlet problem for the equation (2) [1].
The corresponding theorems have been formulated for the QA-deformation of the surfaces of pos-

itive Gauss curvature. QA-deformation in class of surfaces of constant mean curvature is discussed,
for example, in a paper [3] and deformations preserving Gauss curvature in a paper [4].
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Di�erence of metric tensors of two pseudo-Riemannian spaces is called their deformation. Let Vn
� be a pseudo-Rimeannian space with a metric tensor gij , and V̄n � a pseudo-Riemannian space
with a metric tensor ḡij . Let us suppose that metric tensors di�er by an in�nitesimal small number
γij , or

ḡij = gij + γij . (1)

In�nitesimal small numbers with an order above the �rst one will be discarded. Then, the following
expression is true for tensors that are reversed in respect to metric tensors.

ḡij = gij − giαgjβγαβ.
Components of tensor γij are called components of the tensor �eld of velocities of in�nitesimal small
deformation.
While calculating other inner geometric objects, there is often a need to discard certain param-

eters. This way leads to the research on in�nitesimal deformations of a metric. In this sense,
in�nitesimal parameters are parameters, which can be discarded not a�ecting the completeness of
the problem under study.
In�nitesimally small deformation of type (1) of pseudo-Riemannian space (Vn, gij) is called canon-

ical deformation when deformation tensor δgij can be represented in a shape

γij =
1
τgij +

2
τRij ,

where
1
τ ,

2
τ � are some invariants [1, 2].

Since Saint-Venant's times, the deformation research is reduced to analysis of a system of di�eren-
tial equations. Saint-Venant's equations are the main tool for research on in�nitesimal deformations.
Saint-Venant's equations are understood here as a set of equations de�ning the deformation tensor
in such a way that the space remains an Euclidean space.
Generalized Saint-Venant's equations are conditions under which Riemann tensor is preserved

under in�nitesimal deformations of a metric tensor of a pseudo-Riemannian space. They are di�er-
ential equations in covariant derivatives in respect to tensors of Ricci and Riemann.
Conditions, which are imposed on tensors used for research on in�nitesimal deformations, are

both algebraic and di�erential. Having carried out the research of this type we are able to answer
the question: whether the Saint-Venant's equations are true under the pre-de�ned conditions.
The research is carried out locally in tensor form, without limitations on a sign of a metric tensor.

References

[1] Vashpanova, T. Podousova, T. Shevchenko. Saint-Venan's conditions for pseudo-Reimannian spaces Mechanics
and Mathematical Methods, 1(2) : 62�74, 2019.

[2] A. Vasilenko, A. Lesechko. Nonlinear nonaxisymmetric deformation of composite shells of revolution Journal of
Mathematical Sciences, 79(6): 1458�1461, 1996.

78



On the behavior at in�nity of ring Q-homeomorphisms

Ruslan Salimov
(Institute of Mathematics of NAS of Ukraine)

E-mail: ruslan.salimov1@gmail.com

Bogdan Klishchuk
(Institute of Mathematics of NAS of Ukraine)

E-mail: kban1988@gmail.com

Let Γ be a family of curves γ in Rn, n > 2. A Borel measurable function ρ : Rn → [0,∞] is called
admissible for Γ, (abbr. ρ ∈ adm Γ), if ∫

γ

ρ(x) ds > 1

for any curve γ ∈ Γ. Let p ∈ (1,∞). The quantity

Mp(Γ) = inf
ρ∈adm Γ

∫

Rn

ρp(x) dm(x)

is called p�modulus of the family Γ.
For arbitrary sets E, F and G of Rn we denote by ∆(E,F,G) a set of all continuous curves

γ : [a, b] → Rn, that connect E and F in G, i.e., such that γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ G for
a < t < b.
Let D be a domain in Rn, n > 2, x0 ∈ D and d0 = dist(x0, ∂D). Set

A(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2} ,

Si = S(x0, ri) = {x ∈ Rn : |x− x0| = ri} , i = 1, 2 .

Let a function Q : D → [0,∞] be Lebesgue measurable. We say that a homeomorphism f : D →
Rn is ring Q-homeomorphism with respect to p-modulus at x0 ∈ D, if the relation

Mp(∆(fS1, fS2, fD)) 6
∫

A

Q(x) ηp(|x− x0|) dm(x)

holds for any ring A = A(x0, r1, r2) , 0 < r1 < r2 < d0, d0 = dist(x0, ∂D), and for any measurable
function η : (r1, r2)→ [0,∞] such that

r2∫

r1

η(r) dr = 1 .
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Denote by ωn−1 the area of the unit sphere Sn−1 = {x ∈ Rn : |x| = 1} in Rn and by qx0(r) =
1

ωn−1 rn−1

∫
S(x0,r)

Q(x) dA the integral mean over the sphere S(x0, r) = {x ∈ Rn : |x− x0| = r} , here

dA is the element of the surface area. Let L(x0, f, R) = sup
|x−x0|6R

|f(x)− f(x0)| .

Theorem. Suppose that f : Rn → Rn is a ring Q-homeomorphism with respect to p-modulus at
a point x0 with p > n where x0 is some point in Rn. Then for all numbers r0 > 0 the estimate

lim
R→∞


L(x0, f, R)




R∫

r0

dt

t
n−1
p−1 q

1
p−1
x0 (t)



− p−1
p−n

 >

(
p− n
p− 1

) p−1
p−n

> 0

holds.
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In recent years, the expansion of probability theory and measure theory from real values to values
in hypercomplex numbers are actively studied because of their possible applications in mathematics
and physics [1] � [5]. In this paper, we extend the notion of probability measure to the case where
the measure takes values in the algebra of bihyperbolic numbers [6]. In addition, the concept of the
real-valued measure is generalized to the quaternionic-valued measure [7].
The bihyperbolic numbers forms a 4-dimensional algebra over the �eld of real numbers W4 =

{a0 + a1e+ a2f + a3g, ai ∈ R, i = 0, 1, 2, 3} with basis {1, e, f, g} and the following multiplications
e2 = f2 = g2 = 1, ef = fe = g, eg = ge = f, fg = gf = e.

Lemma 1. [8] Any bihyperbolic number α can be represented as α = r1i1 + r2i2 + r3i3 + r4i4, where
ik are idempotents of algebra W4, rk ∈ R, k = 1, 2, 3, 4.

We de�ne onW4 the relation of partial order4 such as α 4 β ⇐⇒ β−α ∈W+
4 = {x1i1 + x2i2 + x3i3

+x4i4| xk ≥ 0, k = 1, 2, 3, 4} . If α 4 β but α 6= β, we denote α ≺ β. Let us denote by Ax, the set
of all bihyperbolic numbers which are not W4-comparable with x ∈W4.

De�nition 2. The W4-valued modulus of a bihyperbolic number α = r1i1 + r2i2 + r3i3 + r4i4 is
said to be |α|W4

= |r1i1 + r2i2 + r3i3 + r4i4|W4
= |r1| i1 + |r2| i2 + |r3| i3 + |r4| i4 ∈W+

4 , where |r1|,
|r2|, |r3|, |r4| are ordinary modules of real numbers.

De�nition 3. Let (Ω ,Σ ) be a measurable space. The function PW4 : Σ → W4 is called a W4-
valued probability (or bihyperbolic probability) on the σ-algebra of events Σ , if the following con-
ditions hold: 1) PW4 (A) < 0,∀A ∈ Σ; 2) PW4 (Ω) = ζ, where ζ = 1, i1, i2, i3, i4; 3) For any
sequence {An, n ≥ 1} ⊂ Σ of pairwise incompatible random events we have PW4 (

⋃∞
n=1An) =∑∞

n=1 PW4 (An).

The triplet (Ω ,Σ , PW4) is called a W4-probability space.
Each W4-valued probability measure can be written in the form PW4 (A) = P1 (A) i1 +P2 (A) i2 +

P3 (A) i3 + P4 (A) i4, where P1 (A) , P2 (A) , P3 (A) , P4 (A) are probabilities.
The topology induced by the bihyperbolic norm generates the Borel σ-algebra BW4 in W4.

De�nition 4. Let (Ω ,Σ , PW4) be a W4-probability space. A function XW4 (ω) : Ω →W4 such as
X−1

W4
(A) ∈ Σ for each open set A in W4 is called a W4-valued random variable.

Each W4-valued random variable XW4 (ω) can be written in the following form XW4 (ω) =
X1 (ω) i1 + X2 (ω) i2 + X3 (ω) i3 + X4 (ω) i4, where X1 (ω) , X2 (ω) , X3 (ω) , X4 (ω) are R-random
variables on Ω .

Theorem 5. The W4-valued function XW4 (ω) on a measurable space (Ω ,Σ ) is a W4-valued random
variable if and only if {ω ∈ Ω |XW4 (ω) ≺ x or XW4 (ω) ∈ Ax} ∈ Σ for all x ∈W4.
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Theorem 6. Let XW4(ω) be a W4-valued random variable on (Ω ,Σ , PW4). For ∀x ∈W4 the follow-
ing conditions are equivalent: {ω ∈ Ω |XW4(ω) 4 x} ∈ Σ ; {ω ∈ Ω |XW4(ω) � x or XW4(ω) ∈ Ax} ∈
Σ ; {ω ∈ Ω |XW4(ω) < x or XW4(ω) ∈ Ax} ∈ Σ ; {ω ∈ Ω |XW4(ω) ≺ x} ∈ Σ .

The algebra of quaternions is a structure of the formH = {a0 + a1i+ a2j + a3k, ai ∈ R, i = 0, 1, 2, 3} ,
where i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

De�nition 7. Let M be a σ-algebra of subsets of a non-empty set X. A quaternionic measure ω
on a measurable space (X,M) is a quaternion-valued function on M such that for any collection of
sets {An, n ∈ N} ⊂M that An ∩Am = ∅ whenever n 6= m we have ω (

⋃∞
n=1An) =

∑∞
n=1 ω (An) .

De�nition 8. The function of the sets var [ω] (A) := sup
∑∞

n=1 |ω (An)| is de�ned on the M, where
the supremum is taken for all partitions of A, we call the complete variation ω.

It is clear that |ω (A)| ≤ var [ω] (A) .

Theorem 9. The total variation var [ω] of a quaternionic measure ω on a measurable space (X,M)
is a positive measure on (X,M).

Theorem 10. If ω is a quaternionic measure on a measurable space (X,M), then var [ω] (X)<∞.
De�nition 11. Let µ be a positive measure and ω be a quaternionic measure on a measurable space
(X,M) . We say that ω is absolutely continuous with respect to µ if µ (A) = 0 implies ω (A) = 0
for A ∈M. We write ω � µ.

De�nition 12. Given a quaternionic measure ω on a measurable space (X,M), assume that there
is a set F ∈M such that ω(A) = ω (A ∩ F ) for every A ∈M, we say that ω is concentrated on F .
This is equivalent to say that ω(A) = 0 whenever A ∩ F = 0.

Let ω1, ω2 be quaternionic measures on M and suppose there exist a pair of disjoint sets F,G
such that ω1 is concentrated on F and ω2 is concentrated on G. Then we say that ω1 and ω2 are
mutually singular, and write ω1⊥ω2.

Theorem 13. Let λ be a signed real σ-�nite measure on a measurable space (X,M) and let ω be a
quaternionic measure on (X,M). Then there exists a unique pair of quaternionic measures ωa and
ωs such that ω = ωa+ωs, ωa � λ, ωs⊥λ. The pair ωa, ωs is called the Lebesgue decomposition of ω
w.r.t. λ, where ωa is the absolutely continuous part and ωs is the singular part of the decomposition.

Theorem 14. (Radon-Nikodym). Let µ be a positive σ-�nite measure on a measurable space
(X,M), let ω be a quaternionic measure on (X,M) and let ωa be absolutely continuous part of
the Lebesgue decomposition of ω w.r.t. µ. Then there is a measurable quaternionic function h (x)
on X such that for every set A ∈ M ωa(A) =

∫
A h(x) dµ, where h(x) is uniquely de�ned up to a

µ-null set.
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The invariants of planar 3-webs with respect to group of symplectic
di�eomorphisms, for the case of the conformal group

Konovenko N.
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E-mail: ngkonovenko@gmail.com

The classical web geometry ([1],[2],[4]) studies invariants of foliation families with respect to
pseudogroup of di�eomorphisms. Thus for the case of planar 3-webs the basic semi invariant is
the Blaschke curvature ([3]). It is also curvature of the Chern connection ([4]) that are naturally
associated with a planar 3-web. Remark that we have in addition to the di�eomorphism group two
in�nite dimensional groups: symplectic and conformal groups.
We investigate invariants of planar 3-webs with respect to group of symplectic di�eomorphisms,

for the case of the conformal group see ([5]). We found the basic symplectic invariants of planar
3-webs that allow us to solve the symplectic equivalence problem for planar 3-webs in general posi-
tion. The Lie-Tresse theorem ([2]) gives the complete description of the �eld of rational symplectic
di�erential invariants of planar 3-webs. We also give normal forms for homogeneous 3-webs, i.e.
3-webs having constant basic invariants.
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Topology of spaces of smooth functions and gradient-like �ows with
prescribed singularities on surfaces
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Let M be a smooth orientable connected closed two-dimensional surface, and f0 ∈ F(M) a
function all whose critical points have types Ai, Dj , Ek. Consider the set F = F(f0) of all functions
f ∈ C∞(M) having the same types of local singularities as f0. Denote by D0(M) the component
of unity in the group D(M) = Diff+(M) of orientation-preserving di�eomorphisms. The group
D(R)×D(M) acts on the space F by �left-right changes of coordinates�.
We want to describe the topology of the space F , equipped with the C∞-topology, and its

decomposition into D0(R)×D0(M)- and D0(M)-orbits. This problem was solved by the author in
the cases when either f0 is a Morse function and χ(M) < 0 [2, 3], or all critical points of f0 have
Aµ types, µ ∈ N [4]. Topology of the D0(M)-orbits was studied by S.I. Maksymenko [5] (allowing
some other types of degenerate singularities) and by the author [2, 3, 4] (for Aµ-singularities).
For any function f ∈ F , consider the set Cf := {P ∈M | df(P ) = 0} of its critical points. These

critical points form �ve classes of topological equivalence (some classes may be empty):

Cminf =
⋃

i≥1

A+,+
2i−1(f), Cmaxf =

⋃

i≥1

A+,−
2i−1(f), Csaddlef = A−1 (f)∪

⋃

η=±
(
⋃

i≥2

A−,η2i−1(f)∪Dη
2i+1(f))∪Eη7 (f),

Ctrivf = (
⋃

i≥1,η=±
Aη2i(f)) ∪ (

⋃

j≥2

D+
2j(f)) ∪ E+

6 (f) ∪ E−6 (f) ∪ E+
8 (f) ∪ E−8 (f), Cmultf =

⋃

j≥2

D−2j(f),

i.e. the critial points of local minima, local maxima, saddle points, quasi- and multy-saddle points,
respectively. Here A±,±i (f), D±j (f) and E±k (f) denote the corresponding subsets of critical points

of A−D −E types. In the set Cextrf := Cminf ∪ Cmaxf of local extremum points, consider the subset

Cextr∗f of degenerate (non-Morse) critical points.

Denote s := max{0, χ(M) + 1}.
Theorem 1. For any function f0 ∈ C∞(M), whose all critical points have A − D − E types,
the space F = F(f0) has the homotopy type of a manifold B = B(f0) having dimension dimB =
2s+ |Cextrf0

|+ |Cextr∗f0
|+ 2|Ctrivf0

|+ 3|Csaddlef0
|+ 4|Cmultf0

|. Moreover:

(a) There exists a surjective submersion κ : F → B and a strati�cation (respectively, a �bration
of codimension |Cf0 |) on B such that every D0(R)×D0(M)-orbit (resp., D0(M)�orbit) in F
is the κ-preimage of a stratum (resp., a �ber) in B.

(b) The map κ provides a homotopy equivalence between any D0(M)-invariant subset I ⊆ F and
its image κ(I) ⊆ B. In particular, it provides homotopy equivalences between F and B, ànd
between every D0(R) × D0(M)�orbit (resp., D0(M)�orbit) from F and the corresponding
stratum (resp., �ber) in B.

In particular, πk(F) ∼= πk(B), Hk(F) ∼= Hk(B). Thus Hk(F) = 0 for all k > dimB.

Our proof of Theorem 1 uses a result (obtained in collaboration with Alexandra Orevkova) about
a �uniform� reduction of a smooth function to a normal form near its critical points.
Suppose Ω ∈ Λn(M) is a volume form on a n-manifold M = Mn. Let P ⊂M be a �nite subset.

For any vector �eld ξ on M ′ := M \ P, we assign the (n − 1)-form β = iξΩ ∈ Λn−1(M ′). Clearly,
this assignement is one-to-one. Furthermore, the �ow of the vector �eld ξ is volume-preserving if
and only β is a closed form. Indeed: the Lie derivative LξΩ = (iξd + diξ)Ω = diξΩ = dβ, so the
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Lie derivative vanishes if and only if dβ = 0. By abusing language, we will call the (n− 1)-form β
a �ow.
Suppose now that n = dimM = 2. A closed 1-form β onM ′ = M \P will be called a gradient-like

�ow on M if there exists a Morse function f ∈ C∞(M), called an energy function of β, such that

(i) the set P coincides with the set of local extremum points of f ,
(ii) the 3-form df ∧ β|M\Cf has no zeros and de�nes a positive orientation on M ,

(iii) in a neighbourhood of every point P ∈ Cf , there exist local coordinates x, y such that either
β = d(xy), f = f(P ) + x2 − y2 and P ∈ Z = Cf \ P, or β = (xdy − ydx)/(x2 + y2),
f = f(P )± (x2 + y2) and P ∈ P.

Geometrically, the set Pβ := P consists of sourses and sinks of the �ow β and coincides with the
set of local extremum points of the energy function f , while the set Zβ := Z = Cf \ P consists of
saddle points of the �ow β and coincides with the set of saddle critical points of f .
Denote by B(M) the space of all gradient-like �ows β on M (having arbitrary �nite sets Z = Zβ

and P = Pβ of saddles, sourses and sinks depending on β). Endow this space with C∞-topology.
For a gradient-like �ow β0 ∈ B(M), denote by B(β0) the set of all gradient-like �ows β ∈ B(M)
having the same local singularities as β0 (in particular, |Zβ| = |Zβ0 | and |Pβ| = |Pβ0 |).
We want to describe the topology of the space B(β0), equipped with the C∞-topology, and its

decomposition into D0(M)-orbits and into classes of (orbital) topological equivalence.

Theorem 2. For any gradient-like �ow β0 on M , the space B(β0) has the homotopy type of the
manifold B = B(f0) from Theorem 3, where f0 is an energy function of β0. Moreover:

(a) There exists a surjective submersion λ : B(β0) → B, a strati�cation and a (|Pβ0 | + |Zβ0 |)-
dimensional �bration on B such that every class of topological equivalence (resp., every
D0(M)-orbit) in B(β0) is the λ-preimage of the stratum (resp., the �bre) from B.

(b) The map λ provides a homotopy equivalence between every D0(M)-invariant subset I ⊆
B(β0) and its image λ(I) ⊆ B. In particular, it provides a homotopy equivalence between
B(β0) and B, as well as between every class of topological equivalence (resp., every D0(M)�
orbit) in B(β0) and the corresponding stratum (resp., �bre) in B. All �bres and strata
in B (and, thus, all classes of topological equivalence and all D0(M)�orbits in B(β0)) are
homotopy equivalent either to a point, or to T 2, or to SO(3)/G or to S2, in dependence on
whether χ(M) < 0, or χ(M) = 0, or χ(M) · |Zβ0 | > 0, or |Zβ0 | = 0, respectively, where G
is a �nite subgroup of SO(3).

In particuar, πk(B(β0)) ∼= πk(B), Hk(B(β0)) ∼= Hk(B). Thus Hk(B(β0)) = 0 for all k > dimB.

We will illustrate our results on several examples.
This work was supported by the Russian Foundation for Basic Research (grant No. 19-01-00775-

a).
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Nonlocal problem with integral conditions for homogeneous system
of partial di�erential equations of second order
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Let Π(T ) = {(t, x) ∈ R2 : t ∈ [0, T ], x ∈ R}, T > 0. Let us denote Eα,β, α > 0, β > 0., to the
space of functions ϕ ∈ L2(R), with the �nite norm [1]

‖ϕ‖Eα,β =

√√√√√ 1

2π

+∞∫

−∞

|ϕ̂(ξ)|2 (1 + |ξ|)2α exp(2β|ξ|)dξ

where ϕ̂(ξ) is the Fourier transform of the function ϕ(x). In the strip Π(T ) we consider nonlocal-
integral problem

L

(
∂

∂t
,
∂

∂x

)
u(t, x) ≡ ∂nu(t.x)

∂tn
+

n∑

j=1

aj
∂nu(t, x)

∂tn−j∂xj
= 0, aj ∈ C, (t, x) ∈ Π(T ), (1)

∂kU

∂t


t=0

− ∂kU

∂t


t=T

+

T∫

0

tkU(t, x)dt = ϕk(x), k = 0, ..., n− 2, (2)

T1∫

0

tn−1U(t, x)dt+

T∫

T2

tn−1U(t, x)dt = ϕn−1(x) (3)

where a1, a2 ∈ C. Assuming that the real parts of roots of polynomial λn + a1λ
n−1 + ... + an

are nonzero and di�erent, the correctioness of the problem (1) - (3) in the space of functions
C2([0, T ], Eα,β) is established.
Obtained results continue the research of the work [2].
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Realization of groups as fundamental groups of orbits of smooth
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Let M be a connected compact oriented surface and P be a real line R or a circle S1. Note, that
the group D(M) of di�eomorphisms of M naturally acts on the space of smooth maps C∞(M,P )
by the rule (f, h) 7−→ f ◦ h, where h ∈ D(M), f ∈ C∞(M,P ). For f ∈ C∞(M,P ) denote by O(f)
the orbit of f under this action. Let M(M,P ) be the set of isomorphism clasess of fundamental
groups π1O(f) of orbits of Morse maps f : M → P .
S. Maksymenko [1, 2] and B. Feshchenko [3] introduced the sets of isomorphism classes B and

T of groups generated by direct products and certain wreath products. They have proved that
M(M,P ) ⊂ B if M is di�erent from a 2-sphere S2 and a 2-torus T 2, and M(T 2,R) ⊂ T . We
proved that these inclusions are equalities.

De�nition 1. Let B be a minimal class of groups satisfying the following conditions:

1) 1 ∈ B;
2) if G1, G2 ∈ B, then G1 ×G2 ∈ B;
3) if G ∈ B i n ≥ 1, then G on Z ∈ B.

Let also T be the set of isomorphism classes of groups consisting of groups of the form G on,m Z2,
where G ∈ B and n,m ≥ 1.
Let also BO be a subclass of B consisting of groups (A×B) onZ, where A,B ∈ B\{1} and n ≥ 1.

Note, that BO ⊂ B ⊂ T .
Denote by F(M,P ) the space of smooth maps f ∈ C∞(M,P ) satisfying the following two

conditions:
(1) all critical points of f belong to the interior of M , and f takes constant values on each

connected component of the boundary of M ;
(2) for each critical point z of f its germ at z is smoothly equivalent to some non-zero homogeneous

polynomial R2 → R of degree ≥ 2 without multiple factors.
The set of all Morse maps fromM to P is denoted byMorse(M,P ). For each map f ∈ F(M,P )

we can de�ne the (continuous) function εf from the set of connected components of the boundary
∂M to {±1}, which takes the value −1 on the boundary component if f has a local minimum on
this component, and +1 if f has a local maximum on this component. Let EM be the set of all
continuous functions ε : ∂M → {±1}. For ε ∈ EM we denote by F(M,P, ε) (Morse(M,P, ε)) subset
of F(M,P ) (Morse(M,P )) of functions f , for which εf = ε.

88



Denote

GX(M,P, ε) := {π1O(f,X) | f ∈ F(M,P, ε)},
MX(M,P, ε) := {π1O(f,X) | f ∈Morse(M,P, ε)},
GΨ := {π1O(f) | f ∈ F(T 2,R), the Kronrod-Reeb graph Γf is a tree},
MΨ := {π1O(f) | f ∈Morse(T 2,R), the Kronrod-Reeb graph Γf is a tree},
GO := {π1O(f) | f ∈ F(T 2,R), the Kronrod-Reeb graph Γf has an unique cycle},
MO := {π1O(f) | f ∈Morse(T 2,R), the Kronrod-Reeb graph Γf has an unique cycle}.

Theorem 2. (1) Let M be a connected compact oriented surface distinct from 2-torus and 2-sphere,
and let ε : ∂M → {±1} be an arbitrary map from EM . Then

a) if M = S1× [0, 1], and ε is constant, i.e takes the same value on components of the boundary
∂M , thenM∂M (M,P, ε) = G∂M (M,P, ε) = B \ {1},

b) if M = S1 × [0, 1] and ε takes di�erent values on the components of the boundary ∂M or
M 6= S1 × [0, 1], thenM∂M (M,P, ε) = G∂M (M,P, ε) = B.

(2) There are equalitiesMΨ = GΨ = T ,MO = GO = BO.
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Original ideas for the extension of classical elasticity theory to account microe�ects of a continuum
go back to the work [1] of Cosserat brothers, where they introduced a new theory called the Cosserat
continuum. The introduced theory grabbed attention of many scientists. Among others, works of
Eringen [2], and Nowacki [3] signi�cantly supported further development of the theory. Eringen
introduced micro-inertia in the theory, which has led to renaming of the theory to the micropolar
elasticity. From practical point of view, the micropolar theory models not only displacements of a
continuum, as in the classical theory of elasticity, but also its rotations.
In this talk we introduce representation formulae for the solution of spatial boundary value

problems of micropolar elasticity. The representation formulae are constructed in the framework
of quaternionic analysis, which is a natural extension of the classical complex analysis to higher
dimensions. The main toolbox for constructing representation formulae for boundary value problems
of mathematical physics in hypercomplex analysis is the co-called quaternionic operator calculus
[4, 5]. The essential ingredient is the T -operator (Teodorescu transform), which is a right inverse
to the generalised Cauchy-Riemann operator. Accomplishing the T -operator with the F -operator
(Cauchy-Bitsadze operator), the higher-dimensional generalisation of the classical Borel-Pompeiu
formula can be obtained.
In this talk, we consider the following boundary value problem:

Problem 1. Let Ω ⊂ R3 be a bounded simply connected domain with a su�ciently smooth bound-
ary Γ = Γ0 ∪ Γ1. A boundary value problem of the micropolar elasticity is formulated as follows

(λ+ 2µ+ κ)∇∇ · u− (µ+ κ)∇×∇× u = −κ∇×ϕ, (1)

(α+ β + γ)∇∇ ·ϕ− γ∇×∇×ϕ− 2κϕ = −κ∇× u, (2)

with boundary conditions
{

u = g1 on Γ0,
ϕ = g2 on Γ0,

and

{
tlknl = t(n)k on Γ1,
mlknl = m(n)k on Γ1,

(3)

where u is the displacement vector, ϕ is the vector of micropolar rotation, tlk is the stress tensor,
mlk is the couple stress tensor, ρ is the material density, j is a rotational inertia, λ and µ are the
Lam�e parameters, κ, α, β, γ are material parameters of micropolar theory, nj are components of the
unit outer normal vector, t(n)k are given surface forces, and m(n)k are given surface moments.

After that, a quaternionic formulation of the boundary value problem (1)-(3) is considered [6]:

Proposition 2. Considering the displacement �eld u ∈ C2(Ω) and micropolar rotations ϕ ∈ C2(Ω)
as pure quaternions, i.e. u = u1e1 + u2e2 + u3e3, ϕ = ϕ1e1 +ϕ2e2 +ϕ3e3, equations of micropolar
elasticity (1)-(2) can be written as follows

DM1D u + κVecDϕ = 0,(
D − i

√
2κ
γ

)
M2

(
D + i

√
2κ
γ

)
ϕ + κVecDu = 0,

(4)
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where the operators M1 and M2 are de�ned by

M1w := −(λ+ 2µ+ κ)w0 − (µ+ κ)w1e1 − (µ+ κ)w2e2

−(µ+ κ)w3e3,
M2w := −(α+ β + γ)w0 − γ w1e1 − γ w2e2 − γ w3e3,

for a quaternion-valued function w = w0 + w1e1 + w2e2 + w3e3.

By reformulating the system as a system of operator equations, the questions of existence, reg-
ularity, stablity and uniqueness can be studied by using the classical and modi�ed versions of
quaternionic operator calculus [4, 5]:

Theorem 3. The system of equations{
DM1D u + κVecDϕ = 0,(

D − i
√

2κ
γ

)
M2

(
D + i

√
2κ
γ

)
ϕ + κVecDu = 0,

(5)

with Dirichlet boundary conditions {
u = g1 on Γ0,
ϕ = g2 on Γ0,

is equivalent to the system of operator equations




u = FΓg̃1 + TM−1
1 FΓ(trTM−1

1 FΓ)−1QΓg̃1

−κTM−1
1 T VecDϕ,

ϕ = Fαg̃2 + TαM
−1
2 F−α

(
trTαM

−1
2 F−α

)−1
Qαg̃2

−κTαM−1
2 T−αVecDu,

(6)

where g̃1 = g1 + κ trTM−1
1 T VecDϕ and g̃2 = g1 + κ trTαM

−1
2 T−αVecDu.

Further results related to the uniqueness of solution, as well as the estimate for a di�erence
between the micropolar model and the classical model of elasticity, will be presented in the talk.
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On non-Hausdor� manifolds of dimension 1
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Consider a T1 topological space Y that is locally homeomorphic with [0, 1). In other words, Y is
a one-dimensional non-Hausdor� but T1 manifold.
As usual, a point y ∈ Y is internal, if it has an open neighborhood homeomorphic with (0, 1).

Otherwise, y has an open neighborhood homeomorphic with [0, 1) and is called a boundary point.
The set of all internal and boundary points will be denoted by IntY and ∂Y respectively.
For a point z ∈ Y de�ne its Hausdor� closure, hcl(z), to be the intersection of closures of all

neighbourhoods of z, that is

hcl(z) :=
⋂

V is a neighbourhood of z

V .

Evidently, z ∈ hcl(z). We say that z is special whenever hcl(z) \ z 6= ∅. Denote by V the set of all
special points of Y .
Let H(Y ) be the group of homeomorphisms of Y endowed with compact open topology, and

Hid(Y ) be the identity path component of H(Y ), so it is a normal subgroup consisting of home-
omorphisms isotopic to the identity. The following statement gives a characterization of Hid(Y )
under assumption that the set V of special points of Y is locally �nite.

Theorem 1. Let Y be a second-countable T1 topological space being locally homeomorphic with [0, 1)
and such that the set V of its special points is locally �nite. Let also k ∈ H(Y ). Then k ∈ Hid(Y )
if and only if the following two conditions hold:

(1) k �xes each special point of Y ;
(2) k preserves orientation of each connected component e of Y \ V.
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Symplectomorphisms preserving smooth functions on surfaces
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Let M be a compact connected surface and P is a connected one-dimensional manifold without
boundary, i.e. either the real line R or the circle S1. Denote by D(M) the group of all smooth (C∞)
di�eomorphisms of M . This group acts from the right on the space C∞(M,P ) by the following
rule: if h ∈ D(M) and f ∈ C∞(M,P ), then the result of the action of h on f is the composition
map f ◦ h : M → P . For f ∈ C∞(M,P ) let Σf be the set of its critical points, and

S(f) = {h ∈ D(M) | f ◦ h = f},
O(f) = {f ◦ h | h ∈ D(M)}

be respectively the stabilizer and the orbit of f under that action. Endow these spaces with C∞

topologies and denote by Did(M) and Sid(f) the corresponding path components of idM in D(M)
and S(f), and by Of (f) the path component of O(f) containing f . We will omit X from notation
whenever it is empty.
Notice that Sid(f) is a normal subgroup of S(f), and the quotient:

π0S(f) := S(f)/Sid(f)

is the group of path components of S(f). This group is an analogue of mapping class group for
f -preserving di�eomorphisms.
Let F(M,P ) be a subset of C∞(M,P ) consisting of maps satisfying the following two axioms:

(B) The map f takes a constant value at each connected component of ∂M and has no critical
points in ∂M ;

(L) For every critical point z of f , there are local coordinates in which f is a homogeneous
polynomial R2 → R of degree ≥ 2 without multiple factors.

Evidently, F(M,P ) contains all Morse maps.
For f ∈ F(M,P ) the homotopy types of Sid(f) and orbits were described by S. Maksymenko, and

the homotopy types of connected components of orbit O(f) by S. Maksymenko, E. Kudryavtseva
(for Morse maps and for smooth functions f : M → R with simple singularities which are not
homogeneous but quasi-homogeneous), B. Feshchenko, I. Kuznietsova, Yu. Soroka, A. Kravchenko.

Theorem 1. Let f ∈ F(M,P ). Then the natural map p : S(f)→ π0S(f) has a section:

s : π0S(f)→ S(f),

so s is a homomorphism such that p ◦ s = idπ0Sid(f).
Moreover, if M is orientable, then there exists a symplectic structure, i.e. a non-degenerate

di�erential 2-form ω, on M , such that the image s
(
π0S(f)

)
consists of symplectic di�eomorphisms

with respect to ω.
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Second classical Zariski topology of multiplicational module
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Let R be a associative ring and M an multiplicative R-module. If N is a subset of an R-module
M we write N ≤M to indicate that N is a submodule of M .

De�nition 1. Proper submodule P of the left module M is called prime submodule, if quotient
module M/P is prime left module, ie Ann(K/P ) = Ann(M/P ) for every nonzero submodule K/P
of module M/P .

This de�nition can be found in such papers: [1], [2], and there are a lot of interesting results
about such modules. Set of all prime submodules of module M is called prime spectrum of module
M and is denoted by Spec(M).

De�nition 2. A non-zero submodule N of M is said to be second if for each a ∈ R, the homomor-
phism N →a N is either surjective or zero [3]. More information about this class of modules can
be found in [4].

Let Specs(M) be the set of all second submodules of M . For any submodule N of M , V s∗(N) is
de�ned to be the set of all second submodules of M contained in N . Of course, V s∗(0) is just the
empty set and V s∗(M) is Specs(M). It is easy to see that for any family of submodules Ni(i ∈ I)
of M , ∩i∈IV s∗(Ni) = V s∗(∩i∈INi). Thus if ζs∗(M) denotes the collection of all subsets V s∗(N)
of Specs(M), then ζs∗(M) contains the empty set and Specs(M), and ζs∗(M) is closed under
arbitrary intersections. In general ζs∗(M) is not closed under �nite unions.
Now let N be a submodule of M . We de�ne W s(N) = Specs(M) − V s∗(N) and put Ωs(M) =
{W s(N) : N ≤ M}. Let ηs(M) be the topology on Specs(M) by the sub-basis Ωs(M). In fact
ηs(M) is the collection U of all unions of �nite intersections of elements of Ωs(M) [6]. We call this
topology the second classical Zariski topology of M .

Theorem 3. Let R be a associative Noetherian ring and letM be a cotop multiplicational R-module
with �nite length. Assume that the second classical Zariski topology of M and the Zariski topology
of M considered in [5] coincide. Then M is a comultiplication R-module.

Theorem 4. Let R be a associative Noetherian ring and let M be a co-multiplication R-module
with �nite length. Then Specs(M) is a spectral space (with the second classical Zariski topology).
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The notion of idempotent measure in the idempotent mathematics (i.e., a part of mathematics
dealing with idempotent operations on reals) corresponds to that of probability measure in the
traditional mathematics [7]. The compact spaces of idempotent measures are intensively investigated
by numerous authors. We are going to present some results on topological and categorical properties
of the idempotent measures in the noncompact case.
One de�nes the set of idempotent measures on X as the set of functionals µ : C(X, [0, 1])→ [0, 1]

satisfying: 1) µ preserves the constants; 2) µ(tφ) = tµ(φ); 3) µ(φ ∨ ψ) = µ(φ) ∨ µ(ψ).
The set I(X) of idempotent measures is endowed with the weak∗ topology.
Note that exists a natural (by X) map ξX : I2(X) → I(X) de�ned as follows. Given φ ∈

C(X, [0, 1]), let φ̄ : I(X)→ [0, 1] be the function de�ned by φ̄(µ) = µ(φ), µ ∈ I(X). Then, for any

M ∈ I2(X), ξX(M)(φ)
def
= M(φ̄).

It turns out that the de�nition of idempotent measure can be formulated in terms of special
subsets of X × [0, 1]. Namely, we consider subsets A ⊂ X × [0, 1] of the form: A is closed and
saturated; X × {0} ⊂ A; A ∩ (X × {1}) 6= ∅.
To every such set A there corresponds a functional A : C(X, [0, 1]) → [0, 1] (we thus keep the

same notation) de�ned by the formula: A(φ) = sup{tφ(x) | (x, t) ∈ A}.
Let X be a Tychonov space (completely regular space). By βX we denote the maximal compact-

i�cation (Stone-�Cech compacti�cation) of X. Consider the set Iβ(X) of all subsets A in X × [0; 1]
such that :
1) A is closed in X × [0, 1];

2) A is saturated, i.e. ∀(x, t) ∈ A ∀t′ , 0 ≤ t′ ≤ t, (x, t
′
) ∈ A;

3) X × {0} ⊂ A;
4) the support of A, i.e., the set supp(A) = {x ∈ X|∃t > 0, (x, t) ∈ A} is compact;
5) ∃x ∈ X: (x, 1) ∈ A.
We denote by Iω(X) the family of all sets A ∈ Iβ(X) such that supp(A) is a �nite set. Now we

de�ne map ξ : I2
ω(X)→ Iω(X), where ξ

ξ(A) = { (x, r)| ∃ s, t ∈ [0, 1], α ∈ Iω(X) such that r = st, (x, s) ∈ α, (α, t) ∈ A }.
Next, we consider the case of metric spaces. For given metric space (X, d), we endow X× [0, 1] by

the metric d̂, where d̂((x, t), (x
′
, t′)) = d(x, x

′
)∨ |t− t′|. The space Iω(X) is endowed with Hausdor�

metric induced by d̂H . We can consider Iω(X), as a new metric space with Hausdor� metric dH .
Apply the same operation Iω to (Iω(X), dH). We obtain a new space Iω(Iω(X)) with (dHH) metric.

Theorem 1. The map ξX : (I
2
ω(X), dHH)→ (Iω(X), dH) is non-expanding.

This theorem allows us to extend the map ξX over the completion I(X) of Iω(X) (here we assume
that X is complete).
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Hyperspaces of convex sets related to idempotent mathematics
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The notion of hyperspace is one of the most important not only in topology but also in another
parts of mathematics. This notion allows us to consider multivalued maps as single valued with the
values being points of a hyperspace.
The hyperspace of compact convex sets in compact convex subsets of Euclidean spaces was �rst

considered by Nadler, Quinn, and Stavrokas [4]. They proved, in particular, that the hyperspace of
the Euclidean space Rn, n ≥ 2, is homeomorphic to the punctured Hilbert cube.
We denote by x⊕y the coordinatewise maximum of x, y ∈ Rn. Given t ∈ R and (y1, . . . , yn) ∈ Rn,

let t ⊗ (y1, . . . , yn) = (min{t, y1}, . . . ,min{t, yn}). A subset A ⊂ Rn is said to be max-min convex
if, for any x, y ∈ A and any t ∈ R, we have x⊕ t⊗ y ∈ A. It is proved in [3] that the hyperspace of
compact max-min convex sets in the Euclidean space Rn, n ≥ 2, is homeomorphic to the punctured
Hilbert cube.
Following the style of idempotent mathematics we de�ne, for any t ∈ R and any x = (x1, . . . , xn) ∈

Rn, t�x = (t+x1, . . . , t+xn). A subset A ⊂ Rn is said to be max-plus convex (see, e.g., [1]) if, for
any x, y ∈ A and any t ∈ (−∞, 0], we have x⊕ t� y ∈ A. It is proved in [3] that the hyperspace of
compact max-min convex sets in the Euclidean space Rn, n ≥ 2, is homeomorphic to the punctured
Hilbert cube.
Recall that the Fell topology on the hyperspace of closed subsets of a Hausdor� topological space

has as a subbase all sets of the form {A | A ∩ V 6= ∅}, where V is an open subset of X, and also
all sets of the form {A | A ⊂ W}, where W has compact complement. We denote by MpccFRn
and MmccFRn the hyperspaces of the max-plus convex and max-min convex nonempty closed (not
necessarily bounded) subsets of Rn endowed with Fell topology. See [5] for description of topology
of the hyperspaces of compact convex subsets of Rn endowed with Fell topology.
Every non-empty closed subset A of a metric space (X, d) can be identi�ed with the distance

function x 7→ d(x,A). The topology of convergence on bounded sets induces the Attouch-Wetts
topology on the hyperspace of non-empty closed sets. We denote by MpccAWRn and MmccAWRn
the hyperspaces of the max-plus convex and max-min convex nonempty closed (not necessarily
bounded) subsets of Rn endowed with Attouch-Wetts topology. Some results on ANR-properties of
the hyperspaces in the Attouch-Wetts topology can be found in [6].
The aim of the talk is to discuss properties of the hyperspaces MpccFRn and MmccFRn, MpccAWRn,

and MmccAWRn.
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Volumes of knots and links in spaces of constant curvature
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We investigate the existence of hyperbolic, spherical or Euclidean structure on cone-manifolds
whose underlying space is the three-dimensional sphere and singular set is a given knot or link. For
two-bridge knots with not more than seven crossings we present trigonometrical identities involving
the lengths of singular geodesics and cone angles of such cone-manifolds. Then these identities are
used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled
in the hyperbolic, spherical and Euclidean geometries.
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LetM2n be an even-dimensional Riemannian manifold, the twistor space Z(M) is the parametriz-
ing space for compatible almost complex structures on M . It is a bundle over M , with �ber
SO(2n)/U(n) and is equipped with two almost complex structures J±, where J+ can be integrable
but J− is never integrable, however, it still is important as will be discussed. Moreover, in the case
where J+ is integrable, it is shown in [1] that M has particular properties, especially when n = 2,
which is an interesting case in physics, since the holomorphic structure of the twistor space corre-
spond to a conformal structure of M . This correspondence is called the Penrose correspondence.
This talk is based on a joint work with R. A. Wolak [2] , in which, the theory of twistors on

foliated manifolds is developed. We construct the twistor space of the normal bundle of a foliation.
It is demonstrated that the classical constructions of the twistor theory lead to foliated objects
and permit to formulate and prove foliated versions of some well-known results on holomorphic
mappings. Since any orbifold can be understood as the leaf space of a suitably de�ned Riemannian
foliation we obtain orbifold versions of the classical results as a simple consequence of the results
on foliated mappings.
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Particular distributions living on the stages of the Goursat Monster Tower (GMT) have been the
object of studies dating as far back as 1889, then 1896, 1914, 1922, 1978, 1982, 1999, 2001 . . . (the
very notion GMT is, of course, not that old). From the GMT stage No 8 onwards there exist local
numerical invariants (moduli) in the local classi�cation of Goursat distributions (cf. Travaux en
cours 62, Paris (2000), Remarks 3 and 4 on p. 110 and 111).
A.A.Agrachev asked in the year 2000 if the moduli of Goursat structures descend to the level

of the nilpotent approximations (NA) � simpler objects retaining some basic properties of initial
completely nonholonomic distributions. (The NA's are of central importance in the geometric
control theory, motion planning problems, etc.) The author gave two very partial answers to
Agrachev's question (in 2006 and 2014, both in the negative). Otherwise, this problem remains
vastly open.
The talk's proper aim is to survey another problem concerning the GMT. The one which asks

for all the strongly nilpotent points (or, better: strata) in the stages of the GMT. (In the way of
explanation, all points in the GMT are weakly nilpotent in the control theory sense, while only a
tiny portion of them is strongly nilpotent.) The conjecture, still unsettled, says that, within the
GMT, `strongly nilpotent' is but a synonym of `tangential', while all the tangential points are known
[already since the mid 2000s] to be strongly nilpotent. So the brunt of this problem boils down to
the computation of the NA's at non-tangential points. That little or . . . that much.
To just give a non-trivial example, here is a non-tangential stratum RRVRV lying in the 5th stage

of the GMT. The associated weights, central in the nonholonomic geometry and analysis, are 1, 1, 2,
3, 5, 7, 11. The NA(RRVRV) computed along the lines of the by-now-classical Bellaiche algorithm
is � in certain adapted coordinates z1, z2, . . . , z7 � spanned by the two vector �elds ∂/∂z1 and

∂/∂z2 + z1∂/∂z3 + z1z2∂/∂z4 + z1z4∂/∂z5 + z1z3z4∂/∂z6 +
(
z1z3z6 +

1

3
z1z

3
3 z4

)
∂/∂z7 .

Yet, in this line of research super-adapted coordinates are sought, in which a visualisation of a given
NA uses as few active variables as possible. In the chosen example such super-coordinates can be
derived from the previous ones. The eventual visualisation of the NA(RRVRV) appears to be

(
∂/∂z1 , ∂/∂z2 + z1∂/∂z3 + z1z2∂/∂z4 + z1z2z3∂/∂z5 + z1z2z

2
3 ∂/∂z6 + z1z2z

4
3 ∂/∂z7

)

(it is not possible to visualise NA(RRVRV) in only two active adapted variables; three as in the
expansion above is the minimal number). Only having NA(RRVRV) in this utmostly compacti�ed
form, it becomes possible to show that the stratum RRVRV is indeed not strongly nilpotent.
The outlined problem is, therefore, pretty much computational. A skilful computer-oriented

person is sought in earnest, willing to actively take part in dealing with this challenging problem.
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A set A ⊂ X is said to be dense (in X), if [A] = X. The density of the space X is de�ned as
the smallest cardinal |A|, where A is a dense subset of X [1]. This cardinal is denoted by d (X). If
d (X) = τ , τ ≥ ℵ0, the space X is said to be τ−dense. If d (X) ≤ ℵ0, then X is said to be separable.
A topological space X is called locally τ−dense at the point x ∈ X, if τ is the smallest cardinal

number, such that x has a neighbourhood of density τ in X [2]. Local density at x is denoted by
ld (x). Local density of the space X is de�ned as follows:

ld (X) = sup {ld (x) : x ∈ X}.
It is clear that local density of a topological space cannot exceed the density of said space, i.e.

ld (X) ≤ d (X).
We say that the weak density of the topological space is τ ≥ ℵ0, if τ is the smallest cardinal

number such that there exists a π-base coinciding with τ of centered systems of open sets, i.e. there
is a π-base B = ∪{Bα : α ∈ A} where Bα is a centered system of open sets for each α ∈ A, |A| = τ
[3]. Weak density of topological space X is denoted by wd(X).
Topological space X is said local weak τ -dense at a point x, if τ is the smallest cardinal number

such that x has a neighborhood of weak density τ in X [4]. Local weak density at a point x is
denoted by lwd(x). The local weak density of a topological space X is de�ned as the supremum of
all numbers lwd(x) for x ∈ X :

lwd(X) = sup{lwd(x) : x ∈ X}.
It is clear that local weak density of a topological space cannot exceed the weak density of said

space, i.e. lwd (X) ≤ wd (X).
Let X be a set, and < be some relation on X. We say that < is a linear order on X if the relation

< satis�es the following properties:
1) If x < y and y < z, then x < z;
2) If x < y then the relation y < x does not hold;
3) If x 6= y then either x < y or y < x holds.
A set X together with some linear order de�ned on it is called a linearly ordered set [1].

Theorem 1. Suppose that a space X satis�es at least one of the following conditions:
1) X is a linearly ordered topological space with the interval topology,
2) X is pseudometric space.
Then X is locally τ−dense if and only if it is locally weak τ−dense.
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The evolution of the concept of entropy from the mathematical de�nition of the theory of proba-
bility to the physical de�nition of entropy in various systems is considered. Statistical interpretation
of entropy for a macrostate is characterized by Ni microstates

W =
N

N1N2. . .
=

N

ΠiNi
.

The equilibrium state corresponds to the maximum probability, which is proportional to the maxi-
mum entropy, and is displayed by the Boltzmann-Planck law

S = k · lnW.
For large N using the Stirling formula

lnN ! = NlnN −N
and taking into account the degeneracy of the energy states, zi, we have the following formula for
the probability of a system of particles

W =
N

n1n2. . . nr
Πiz

ni
i .

Within the framework of the AdS/CFT correspondence, a model for determining the entropy of
black holes through the number of microstates is considered. It is known that the entropy of a black
hole is determined by the Bekenstein-Hawking formula,

S =
A

4G
,

where A and G are the surface areas of the black hole and the gravitational constant, respectively.
In the framework of superstring and D-brane theory, the concept of entropy has changed due to
the presence of the extra-dimensional Calabi-Yau space, which is folded at each point of the usual
Minkowski space

S =
Ad+p

4Gd+p
,

where p are spatial directions of the space Rp × Sd−1, with d � the number of space dimensions
transverse to the p-directions. According to Strominger [1], a black hole can be represented as
a submanifold of such a Calabi-Yau like a pea in a shell. Depending on the dimension of space,
the two-dimensional world surface of the string completely surrounds the two-dimensional sphere,
the 3-brane surrounds the three-dimensional sphere, etc. Since the black hole tends to de�ate and
swell, according to the ideology of �op transformations, a rupture of the Calabi-Yau space occurs.
In this case, according to Strominger's calculations, the black hole undergoes a phase transition and
transforms into a pointlike particle like a photon,

Sarray
Sstring

∼
(
R

rH

)1/(d−3)

.

So the array dominates for small horizon radii, and the black string dominates for large horizon
radii.
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String theory spacetimes with conserved quantum numbers can be black holes, but more com-
monly they are black p-branes. According to papers [2, 3] black hole entropy

SBH =
Ωd−2r

d−2
H

4Gd
can be described in terms of D-brane theory,

SBH =
Ω8−pr

8−p
H

4G10−p
coshβ,

where coshβ depends on the number of branes. For particular cases, when the number of branes that
cover a black hole is determined, we can calculate d = 4 entropy in usual four-dimensional space-
time. D-brane method for a microscopic accounting for SBH of BPS black holes with macroscopic
entropy leads to the formula

SBH = 2π
√
N2N6N5Nm,

(Ni - the numbers of i-branes) which is in agreement with black hole entropy formula, [2].
Using BPS - states of D-branes represented by vector bundles of the type

Spin(k)→ Spin(k + 1)

↓ (1)
Sk

it can be shown that for k = 6, Spin(6) group is isomorphic to the SU(4) group. Since the group
describing black holes is SU(2, 2|4) ∼ SU(2, 2) × SU(4) (SU(2, 2) describes the external degrees
of freedom, and SU(4) - the internal ones), the greatest interest is of group SU(4). Then we can
work with Spin vector bundles, which present D-branes with the phase transitions between them
classi�ed with Grothendieck K-group in the framework of the Cli�ord algebra formalism. As a
result, we obtain a chain of phase transitions of a black hole represented by transitions between
topological invariants of vector bundles described by K-groups

K(S6)→ K(S4)→ K(S2)→ K(S0) = Z ,

which signal about an equidistant set of energy levels of a point-like particle into which the black
hole has passed during the phase transition.
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The talk is devoted to the �uniform� reduction of C∞ smooth functions on 2-dimensional manifolds
to a canonical form at the singular points of these functions.

De�nition 1. A smooth function f = f(u1, u2) has a singularity E6 at its critical point P ∈ R2 if

(i) the �rst and second di�erentials df(P ) = 0, d2f(P ) = 0, and the third di�erential d3f(P ) 6=
0 and is a perfect cube;

(ii) there exists a vector v ∈ Ker d3f(P ) such that v4f 6= 0 (by v4f we mean the fourth derivative
of f along the tangent vector v at P ).

Theorem 2 (Reducing E6 to normal form). Let the function f(u1, u2) have a singularity E6 at the
critical point P . Then, in some neighborhood of P , there is a local coordinate system in which the
point P is the origin, and the function has the normal form

f = f(P ) + x̃3 ± ỹ4.

Moreover, this coordinate system can be chosen in such a way that the coordinate change (u1, u2)→
(x̃, ỹ) can be expressed in terms of the original function and its partial derivatives of order ≤ 7 using
algebraic operations and the operation of taking a proper integral.

Remark 3. In [1], the �rst part of Theorem 2, i.e. the existence of a coordinate change, was proved
using Tougeron's theorem [2]; in view of this, obtaining a formula for the corresponding coordinate
change requires solving the Cauchy problem for a system of ordinary di�erential equations. We
construct our coordinate change explicitly, without using Tougeron's theorem.

Our proof of Theorem 2 consists of three steps. At �rst, we consider a smooth function in two
variables of the form f(u1, u2) = u3

1+u4
2+R(u1, u2), where the Taylor series of the function R(u1, u2)

at the origin has zero coe�cients at all monomials of the form uk1u
l
2, 4k + 3l ≤ 12. At second, by

the sequence (u1, u2)→ (x, y) of substitutions described in [1], we reduce the function f to such a

form that the origin leaves �xed and f
(k+l)

xkyl
(0, 0) = 0, where 0 ≤ k < 3, 0 ≤ l < 4. At third, using

the Taylor series expansion of the function with an integral remainder, we reduce the function to
the required normal form by the coordinate change

φ : R2
x,y → R2

x̃,ỹ with x̃ = x 3
√
g(x, y), ỹ = y 4

√
h(x, y),

where g(x, y) :=
∑3

k=0
yk

k! f
(k)

yk
(x, 0)/x3 and h(x, y) := 1

6

∫ 1
0 f

(4)
y4 (x, sy)(1− s)3 ds.

Our next goal is to describe a neighborhood in which the above coordinate change φ exists and
is regular. To simplify our computations, we will assume that the following is true:

Assumption 4. f
(4)
y4 (0, 0) = 24, f ′′′x3(0, 0) = 6.

Theorem 5 (Estimating the radius of a neighborhood where the coordinate change is regular). Un-
der the hypotheses of Theorem 2 and Assumption 4, let U0 = {(x, y) | max(|x|, |y|) < R0} be a neigh-
borhood of the origin such that Cαβ = supU0

∣∣fα+β
xαyβ

(x, y)
∣∣ ≤M for (α, β) ∈ {(0, 5), (1, 4), (3, 1), (3, 2), (3, 3), (4, 0),

(4, 1), (4, 2), (4, 3)}, where R0 > 0,M ≥ 0. Let's consider the neighborhood U = {(x, y) | max(|x|, |y|) <
R}, where the positive constant R is de�ned by the formula: R = min{R0,

2
M+2}. Let also φ be the

coordinate change from the proof of Theorem 2 that reduces f to the normal form E6. Then:
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(a) the functions h(x, y) and g(x, y) do not change sign in U , that is, the change φ|U is well
de�ned and is smooth;

(b) at every point x ∈ U , one has ‖φ′(x) − I‖ < C < 1, where C = 2
5 , i.e., the coordinate

change φ|U is close to the identity;
(c) the coordinate change φ|U is injective and regular, i.e., it is an embedding and det |φ′(x)| 6= 0

at every point x ∈ U , moreover the image of this embedding contains the disk of radius
(1− C)R centred at the origin.

Remark 6. Our coordinate change φ|U from Theorem 2 and Theorem 5 provides a �uniform�
reduction of the function f at a singular point of type E6 to the canonical form x̃3± ỹ4 in the sense
that the neighbourhood radius and the coordinate change we constructed in this neighbourhood (as
well as all partial derivatives of the coordinate change) continuously depend on the function f and
its partial derivatives. A uniform reduction of smooth functions near critical points to a canonical
form was known earlier for the case of smoothly stable singularities [3]. A uniform reduction of
smooth functions to a canonical form by Ck-smooth changes (for �nite k < ∞) is known for �nite
type singularities [3] and for topologically stable singularities [5].

To prove Theorem 5, we apply the following lemma to the coordinate transformation φ from the

proof of Theorem 2. We estimate the norm of the matrix in terms of its elements: ‖A‖ ≤
√∑

a2
ij ,

A = {aij}ni,j=1.

Lemma 7. Let φ : U → Rn be a smooth mapping, where U is a convex open subset of Rn. Let
the di�erential of φ have the form φ′(x) = I + A(x), where I is the unit matrix of dimension n,
‖A‖ < C, 0 < C < 1. Then φ is injective and det |φ′(x)| 6= 0 at every point x ∈ U , i.e., φ is a
di�eomorphism to its image φ(U). Moreover, 〈φ′(x),x〉 ≥ (1− C)|x|2 for every point x ∈ U .
From the last assertion of Lemma 7 and [6, Corollary 8.3, Step 1], we conclude that φ(U) contains

the disk of radius (1− C)R centred at the origin. This completes our proof of Theorem 5.
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The topological and geometric properties of classes of generally convex sets in multidimensional
real Euclidean space Rn, n ≥ 2, known as m-convex, weakly m-convex, m-semiconvex, and weakly
m-semiconvex, m = 1, 2, . . . , n− 1, are studied in [1]�[6]. A set of the space Rn is called m-convex

(m-semiconvex ) if for any point of the complement of the set to the whole space there is an
m-dimensional plane (half-plane) passing through this point and not intersecting the set. An open
set of the space is called weakly m-convex (weakly m-semiconvex ), if for any point of the
boundary of the set there exists an m-dimensional plane (half-plane) passing through this point and
not intersecting the given set. A closed set of the space is called weakly m-convex (weakly m-

semiconvex ) if it is approximated from the outside by a family of open weakly m-convex (weakly
m-semiconvex) sets. These notions were proposed by Professor Yuri Zelinskii [1], [2].
Let us denote the classes of m-convex and weakly m-convex sets in Rn, n ≥ 2, by Cn

m and WCn
m,

respectively. There are weakly m-convex sets in Rn, n ≥ 2, 1 ≤ m < n, which are not m-convex, i.
e., the class WCn

m \Cn
m is not empty for any m = 1, 2, . . . , n − 1. The example of an open set of

the class WC2
1 \C2

1 is constructed in [4]. The examples of open and closed sets of WCn
n−1 \Cn

n−1
and examples of open sets of WCn

m \Cn
m, n ≥ 3, 1 ≤ m < n− 1, are constructed in [6]. Moreover,

any open or compact set of WCn
n−1 \Cn

n−1 is necessarily disconnected, but there exist domains of
WCn

m \Cn
m, n ≥ 3, 1 ≤ m < n− 1, which show the following three theorems.

Theorem 1. ([4]) An open set of the class WCn
n−1 \ Cn

n−1 consists of at least three connected
components.

Theorem 2. ([6]) A compact set of the class WCn
n−1 \ Cn

n−1 consists of at least three connected
components.

Theorem 3. ([6]) There exist domains of the class WCn
m \Cn

m, n ≥ 3, 1 ≤ m < n− 1.

It is also known the topological classi�cation of open (weakly) (n − 1)-convex sets in the space
Rn with smooth boundary [1], [4]. Each such a set is convex, or consists of no more than two
unbounded connected components, or is given by the Cartesian product E1 × Rn−1, where E1 is a
subset of R.
Let us denote the classes of m-semiconvex and weakly m-semiconvex sets in Rn, n ≥ 2, by Sn

m

and WSn
m, respectively. In [3] it is constructed an example of an open set of the class WS2

1 \S2
1. It

is also conjectured that any open set of WS2
1 \S2

1 consists of at least three components. The latter
statement is proved in [4]. There can be also constructed sets of WSn

n−1 \ Sn
n−1 and the example

of domains of WSn
m \ Sn

m, n ≥ 3, 1 ≤ m < n − 1, similar to the domains of WCn
m \ Cn

m. The
following theorem shows the impossibility of the topological classi�cation of weakly 1-semiconvex
sets with smooth boundary similar to the topological classi�cation of open (n−1)-convex and weakly
(n− 1)-convex sets with smooth boundary.

Theorem 4. ([5]) An open, bounded set of the class WS2
1 \S2

1 with smooth boundary consists of at
least four connected components.
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On representations of qij-commuting isometries
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C∗-algebras generated by isometries have been studied by various authors. Among the most
relevant examples we mention Toeplitz algebras, Cuntz algebras, and their deformations. These
examples belong to the class of ∗-algebras with Wick ordering [1].
Recall that the Cuntz-Toeplitz algebra O0

d is a unital C
∗-algebra generated by elements sj , j =

1, . . . , d, which satisfy relations

sjsk = δjkI, j, k = 1, . . . , d.

In this paper, we consider representations of C∗-algebraWd generated by elements sj , j = 1, . . . , d,
satisfying relations

s∗i si = I, s∗i sj = qijsjs
∗
i , |qij | < 1, qij = q̄ji, 1 ≤ i 6= j ≤ d. (1)

One can see that for qij = 0, i 6= j, this algebra is O0
d. It was conjectured in [2] that, in particular,

for |qij | < 1, i 6= j, the corresponding C∗-algebra is isomorphic to O0
d, however, the proof is known

for the cases d = 2 [3] or |qij | <
√

2 − 1 [2] only. While the representations of the Cuntz-Toeplitz
algebras were studied in detail in a number of papers, for other Wick algebras, including Wd, only
the Fock representation [1] is known. Therefore, constructing representations of �deformed� relations
(1) can give a hint for a construction of the isomorphism between Wd and O0

d in a general case.
We start with some notations. Let α = (α1, . . . , αm) ∈ {1, . . . , d}m be a �nite multiindex of

length m, |α| = m, let Λm = {1, . . . , d}m be the set of all �nite multiindices of length m, Λ0 = ∅,
and let Λ0 = ∪∞m=0Λm be the set of all �nite multiindices of arbitrary length. Also, we will use the
set Λ = {1, . . . , d}∞ of all in�nite multiindices. For each �nite multiindex α = (α1, . . . , αm) ∈ Λ0

we use notation sα = sα1 . . . sαm . For a �nite multiindex we use standard mappings:

Λm 3 α = (α1, . . . , αm) 7→ σ(α) = (α2, . . . , αm) ∈ Λm−1,

Λm 3 α = (α1, . . . , αm) 7→ σj(α) = (j, α2, . . . , αm) ∈ Λm+1, j = 1, . . . , d.

The same mappings can be obviously de�ned for an in�nite multiindex α ∈ Λ.
If α ∈ Λ0 does not contain j, then (1) implies

s∗jsα = q(j, α)sαs
∗
j , q(j, α) = qjα1 . . . qjαm .

If α contains j, then α can be represented as α = (α′jα′′), where α′ does not contain j, then

s∗jsα = q(j, α′)sα′sα′′ = q(j, α)sα\j

(here and below, we denote by α \ j = (α′α′′) multiindex obtained from α by removing the �rst
occurrence of j, and set q(j, α) = q(j, α′) for convenience).
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For in�nite multiindices α, β ∈ Λ, we de�ne q(α, β) as follows. If there exists γ ∈ Λ, α′, β′ ∈ Λm,
m ≥ 0, for which

α = (α′γ), β = (β′, γ), α′ and β′ coincide up to a permutation,

then we de�ne q(α, β) = q(α′, β′), and zero otherwise. It is a straightforward fact that q(α, β) is
well-de�ned.
We proceed with introducing an appropriate Hilbert space. We say that in�nite multiindices

α, β ∈ Λ are equivalent, denoted by β ∼ α, if they �have the same tails up to a shift�, i.e., there
exist numbers m,n, such that σm(α) = σn(β). Fix an in�nite multiindex α and consider a family
of vectors (eβ | β ∼ α). For these vectors, de�ne

(eβ, eγ) = q(β, γ), (2)

in particular, (eβ, eβ) = 1.

Proposition 1. Form (2) is well-de�ned and positive.

For a �xed α ∈ Λ, de�ne a Hilbert space Hα as the closed linear span of vectors (eβ | β ∼ α)
with respect to the introduced scalar product.

Theorem 2. 1. Operators in Hα

πα(sj)eβ = eσj(β), πα(s∗j )eβ =

{
0, β does not contain j,

q(j, β)eβ\j , otherwise,

form well-de�ned ∗-representation of the C∗-algebra Wd.
2. This representation is irreducible
3. Representations corresponding to multiindices α, α′ are unitary equivalent i� the corresponding

Hilbert spaces coincide, i.e., α ∼ α′.
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This paper introduces homotopic nerve complexes in a planar Whitehead CW space [6, �4-5] and
their Rotman free group presentations [4, �11,p.239]. A CW complex in a space K is a closure-�nite
cell complex that is Hausdor� (union of disjoint cells), satifying the containment property (closure of
every cell complex is in K) and intersection property (common parts of cell complexes in K are also
in K). A complex K is locally �nite, i.e., every point p ∈ K is a member of some �nite subcomplex
of K and every complex has a �nite number of faces [5, �5.2,p.65]. A planar CW complex K is
a collection of 0-cells (vertexes), 1-cells (edges) and 2-cells (�lled triangles). Collections of planar
cells attached to each other are sub-complexes in K.

De�nition 1. 1-Cycle. A 1-cycle cycE in a CW space K is a collection of path-connected vertexes
on 1-cells (edges) attached to each other and with no end vertex.

The edges in a 1-cycle cell complex in a CW space are replaced by homotopic maps to obtain a
homotopic cycle.

De�nition 2. Homotopic-Cycle. A homotopic cycle E (denoted by cycE) is de�ned to be
{hi}ni=1, a set of n paths in a space X, where h1(0) = hn(1) and the initial point of hi+1 is the
terminal point of hi for 2 ≤ i ≤ n− 1, i.e., hi(0) = h(i−1)(1). Each path is a mapping h : [0, 1]→ X

and hi(0) is a vertex in a �nite set of cycle vertices. A reverse path h̄i(t) := hi(t − 1) gives us an
inverse map, so that

hi(0)− h̄i(1) = hi(0)− hi(1− 1) = hi(0)− hi(0) = 0.

In cycle cycE, every vertex vi is reachable by k maps from a distinguished vertex h1(0) = v0, i.e.,

kv0 := h1(0) + · · ·+ hk+1(0)

i.e., k maps to reach hk+1(0) from h1(0)︷ ︸︸ ︷
:= h1 → · · · → hk+1.

Here, + represents a move from one vertex to another one in the cycle, which translates to a
homotopic path between vertices.

De�nition 3. Nerve Complex. A nerve complex NrvE in a space X is a collection of nonempty
cell complexes with nonvoid intersection.

Theorem 4. A pair of pair of 1-cycles with a common vertex in a CW space is a nerve complex.

Theorem 5. Every collection of homotopic cycles with a common vertex in a CW space is a ho-
motopic nerve complex.

Lemma 6. Every vertex in the triangulation of the vertices in a CW space is the nucleus of an
Alexandro�-Hopf nerve complex [1, �4.2.11, p. 161].
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and Technological Research Council of Turkey (T�UB
ITAK) Scienti�c Human Resources Development (BIDEB) under
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Theorem 7. A CW space containing n triangulated vertexes contains n Alexandro�-Hopf nerve
complexes.

Remark 8. A �nite group G is free, provided every element x ∈ G is a linear combination of its
basis elements (called generators) [2, �1.4, p. 21]. We write B to denote a nonempty basis set of
generators

{
g1, . . . , g|B|

}
and G(B,+) to denote the free group with binary operation +.

De�nition 9. Rotman Presentation[4, p.239] Let X = {g1, . . . } ,4 = {v =
∑
kgi, v, gi ∈ X}

be a set of generators of members of a nonempty set X and set of relations between members of X
and the generators in X. A mapping of the form {X,4} → G, a free group, is called a presentation.

De�nition 10. Let 2K be the collection of cell complexes in a CW space K, E ∈ 2K , basis B ∈ G,
ki the i

th integer coe�cient in a linear combination
∑
i,j
kigj of generating elements gj ∈ B. A free

group G presentation of E is a continuous map f : 2K → 2K de�ned by

f(E) =



v :=

∑

i,j

kigj : v ∈ E, gj ∈ B, ki ∈ Z





=

E 7→ free group G︷ ︸︸ ︷
G(
{
g1, . . . , g|B|

}
,+).

Lemma 11. [3, �4, p. 10] Every homotopic cycle in a space X has a free group presentation.

Here are two main results.

Theorem 12. Every homotopic cycle in a CW space has a free group presentation.

Theorem 13. Every homotopic nerve in a CW space has a free group presentation.

Remark 14. An application of nerve complexes is given in terms of the approximation of video
frame shapes.
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A uniform measure in Euclidean space Rd is a measure that assigns to each ball B(x, r) with
center x in the support of the measure, a mass dependent of r and independent of the choice of x.

For example any invariant measure of a subgroup of the isometry group of Rd is uniform, and this
sub-class of uniform measures are called homogeneous measures. There are known a few examples of
non-homogeneous uniform measures, such as the volume measure of the "light cone" {x2 +y2 +z2 =
w2} ⊂ R4.

The study of uniform measures in Euclidean space was initiated by David Preiss as the crucial
ingredient of his 1987 proof of the Besicovitch conjecture [4], and one motivation for extending
this study is to understand the structure of measures in general geometry. It is known (see [1])
that a uniform measure must be a multiple of the k-dimensional area measure restricted to a k-
dimensional analytic variety, and the classi�cation of k-dimensional uniform measures remains a
di�cult open problem, still open even in the plane (see also [2], [3]). I will present a classi�cation
[5] of 1-dimensional uniform measures in Rd, and mention some open questions for more general
dimensions. This is joint work with Paul Laurain, from Paris 7 University.

References

[1] Bernd Kirchheim, David Preiss. Uniformly distributed measures in Euclidean spaces.Math. Scand., 90(1):152�160,
2002.

[2] Old�rich Kowalski and David Preiss. Besicovitch-type properties of measures and submanifolds. J. Reine Angew.
Math., 379:115�151, 1987.

[3] A. Nimer. Conical 3-uniform measure: a family of new examples and characterizations. arXiv:1608.02604, 2016.
[4] David Preiss. Geometry of measures in Rn: distribution, recti�ability, and densities. Ann. of Math. (2),

125(3):537�643, 1987.
[5] Paul Laurain, Mircea Petrache. Classi�cation of uniformly distributed measures of dimension 1 in general codi-

mension, To appear in Asian J. Math., 2021.

112



Centralizers of elements in Lie algebras of vector �elds

Yevhenii Chapovskyi
(Academician Glushkov Avenue, 4, Kyiv, Ukraine)

E-mail: safemacc@gmail.com

Danil E�mov
(Academician Glushkov Avenue, 4, Kyiv, Ukraine)

E-mail: d_efimov@knu.ua

Anatoliy Petravchuk
(Academician Glushkov Avenue, 4, Kyiv, Ukraine)

E-mail: apetrav@gmail.com

Let K be an algebraically closed �eld of characteristic zero and A = K[x1, . . . , xn] the polynomial
ring over K. A K-derivation D of A is a K-linear mapping D : A → A that satis�es the rule:
D(ab) = D(a)b + aD(b) for all a, b ∈ A. If K = R then every derivation D on R[x1, . . . , xn] can
be considered as a vector �eld on Rn with polynomial coe�cients. The vector space Wn(K) (over
the �eld K)of all K-derivations (or vector �elds) on the polynomial ring A is a Lie algebra over K.
Any derivation D ∈ Wn(K) can be uniquely extended on the �eld R = K(x1, . . . , xn) of rational

functions in n variables by the rule: D(a/b) = (D(a)b − aD(b))/b2, the vector space W̃n(K) of all
derivations on R is also a Lie algebra, it is in fact the Lie algebra of all vector �elds with rational
coe�cients on Kn.
Recall that for a given Lie algebra L and its element x ∈ L the set CL(x) = {y ∈ L : [x, y] = 0}

is called the centralizer of x in L. The centralizer CL(x) is a subalgebra of the Lie algebra Wn(K)
containing the element x. The structure of centralizers of polynomial derivations is of signi�cant
importance due to applications in di�erential equations and geometry (see, for example [1], [2]).
Let p and q be algebraically independent irreducible polynomials from the ring A. A polynomial

f ∈ A will be called p-q-free if f is not divisible by any homogeneous polynomial in p and q of
positive degree. One can write every polynomial g ∈ A in the form g0g1, where g0 is a p-q-free
polynomial and g1 = h(p, q) for some homogeneous polynomial h(s, t) ∈ K[s, t]. The (total) degree
of h in s, t will be called the p-q-degree of g and denoted by degp−qg. The following result gives a
characterization of a centralizer of a polynomial derivation if its �eld of constants (in the �eld of
rational functions) satis�es certain restrictions:

Theorem 1. Let D1 ∈ Wn(K) be such a derivation that its �eld of constants KerD1 in the �eld
of rational functions K(x1, . . . , xn) is of transcendence degree one and contains no nonconstant
polynomials. Then KerD1 = K(pq ) for some irreducible and algebraically independent polynomials

p, q ∈ K[x1, . . . , xn] and D1 = hf(p, q)D0 for some homogeneous polynomial f in the variables p, q,
p-q-free polynomial h and irreducible derivation D0. Further, the centralizer C = CWn(D) is one of
the following Lie algebras: (1) C = K[p, q]mhD0, where K[p, q]m is the linear space of homogeneous
polynomials in p, q and m = degp-q f , (2) C = (K(pq )D1 + · · ·+K(pq )Dk)∩Wn(K) for some linearly

independent with D1 derivations D2, . . . , Dk ∈ C over the �eld K(x1, . . . , xn).
Moreover, C is of �nite dimension over the �eld K.
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The class of quasisymmetric mappings on the real axis was �rst introduced by A. Beurling and
L. V. Ahlfors [1]. Later P. Tukia and J. V�ais�al�a [2] considered these mappings between general metric
spaces. See, e.g., [3] for an overview of the results in this direction. In our work we generalize
the concept of quasisymmetric mappings to the case of general semimetric spaces. We establish
conditions under which the image f(X) of a semimetric space X with the triangle function Φ1

under η-quasisymmetric embedding f is a semimetric space with another triangle function Φ2.
Condition under which f preserves a Ptolemy inequality is also found as well as condition under
which f preserves a relation �to lie between� imposed on three di�erent points of the space.
Let X be a nonempty set. Recall that a mapping d : X ×X → R+, R+ = [0,∞) is a metric if

for all x, y, z ∈ X the following axioms hold: (i) (d(x, y) = 0)⇔ (x = y), (ii) d(x, y) = d(y, x), (iii)
d(x, y) 6 d(x, z) + d(z, y). The pair (X, d) is called a metric space. If only axioms (i) and (ii) hold
then the pair (X, d) is called a semimetric space.

De�nition 1. Let (X, d), (Y, ρ) be semimetric spaces. We shall say that an embedding f : X → Y
is η-quasisymmetric if there is a homeomorphism η : [0,∞)→ [0,∞) so that

d(x, a) 6 td(x, b) implies ρ(f(x), f(a)) 6 η(t)ρ(f(x), f(b))

for all triples a, b, x of points in X and for all t > 0.

A de�nition of a triangle function was introduced by M. Bessenyei and Z. P�ales in [4].

De�nition 2. Consider a semimetric space (X, d). We say that Φ: R+ × R+ → R+ is a triangle
function for d if Φ is symmetric and monotone increasing in both of its arguments, satis�es Φ(0, 0) =
0 and, for all x, y, z ∈ X, the following generalized triangle inequality holds:

d(x, y) 6 Φ(d(x, z), d(y, z)).

The most important triangle functions Φ(u, v) which generate well-known types of metrics and
their generalizations are u+ v (metric), K(u+ v) (b-metric with K > 1), max{u, v} (ultrametric).
Proposition 3. Let (X, d) be a semimetric space with the triangle function Φ1, (Y, ρ) be a semimet-
ric space and let f : X → Y be a surjective η-quasisymmetric embedding. Suppose that the following
conditions hold for Φ1 and for some function Φ2 : R2

+ → R+:

(i) Φ2 is symmetric, monotone increasing in both of its arguments and satis�es Φ(0, 0) = 0,
(ii) λΦ1(x, y) 6 Φ1(λx, λy) and Φ2(λx, λy) 6 λΦ2(x, y) for every λ > 0,
(iii) For every t1, t2 ∈ R+ \ {0} the inequality

1 6 Φ1

(
1

t1
,

1

t2

)
implies 1 6 Φ2

(
1

η(t1)
,

1

η(t2)

)
. (1)

Then Φ2 is a triangle function for the space (Y, ρ).
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In what follows under Ptolemaic spaces we understand semimetric spaces (X, d) for which the
well-known Ptolemy inequality

d(x, z)d(t, y) 6 d(x, y)d(t, z) + d(x, t)d(y, z)

holds. Note that this inequality does not imply the standard triangle inequality in (X, d).

Proposition 4. Let (X, d) be a Ptolemaic space, (Y, ρ) be a semimetric space and let f : X → Y
be a surjective η-quasisymmetric embedding. If for every t1, t2, t3, t4 ∈ R+ the inequality

t1t2t3t4 6 t1t2 + t3t4 implies η(t1)η(t2)η(t3)η(t4) 6 η(t1)η(t2) + η(t3)η(t4), (2)

then (Y, ρ) is also Ptolemaic.

Let (X, d) be a semimetric space and let x, y, z be di�erent points from X. We shall say that the
point y lies between x and z if the equality d(x, z) = d(x, y) + d(y, z) holds. K. Menger [5] seems
to be the �rst who formulated the concept of �metric betweenness� for general metric spaces.

Theorem 5. Let (X, d), (Y, ρ) be semimetric spaces and let f : X → Y be η-quasisymmetric em-
bedding. If the homeomorphism η has the form

η(t) =

{
1
2 + Ψ1(t, 1− t), t ∈ [0, 1],

1
1
2

+Ψ2( 1
t
,1− 1

t )
, t ∈ [1 +∞),

(3)

where Ψ1, Ψ2 are some continuous, antisymmetric, strictly increasing by the �rst variables, de�ned
on [0, 1] × [0, 1] functions of two variables such that Ψ1(1, 0) = Ψ2(1, 0) = 1/2, then f preserves
metric betweenness.

References

[1] Arne Beurling, Lars V. Ahlfors. The boundary correspondence under quasiconformal mappings. Acta Mathematica,
96:125�142, 1956.

[2] Pekka Tukia, Jussi V�ais�al�a. Quasisymmetric embeddings of metric spaces. Annales Academiae Scientiarum Fen-
nicae. Series A I. Mathematica, 5:97�114, 1980.

[3] Juha Heinonen. Lectures on analysis on metric spaces. New York: Springer, 2001.
[4] Mih�aly Bessenyei, Zsolt P�ales. A contraction principle in semimetric spaces. Journal of Nonlinear and Convex

Analysis, 18(3):515�524, 2017.
[5] Karl Menger. Untersuchungen �uber allgemeine Metrik. Mathematische Annalen, 100:75�163, 1928.

115



IW contractions and their generalizations

Dmytro R. Popovych
(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)

E-mail: deviuss@gmail.com

Contractions of Lie algebras are a kind of limit processes between orbits of such algebras. In
1953, In�on�u and Wigner studied special contractions of Lie algebras as a part of broader study
of contractions of Lie groups and their representations. These contractions were generalized by
Doebner and Melsheimer in 1967. A rigorous general de�nition of contractions of Lie algebras was
given by Saletan in 1961. He also studied contraction whose matrices are �rst-order polynomials
with respect to contraction parameters. Since then, a number of conjectures about various ways of
realizing contractions of Lie algebras had accumulated in the literature.

De�nition 1. Let V be an n-dimensional vector space over F = C or F = R, n < ∞, and let
Ln = Ln(F) denote the set of all possible Lie brackets on V . Given µ ∈ Ln and U ∈ C

(
(0, 1],GL(V )

)
,

de�ne the family of µε ∈ Ln, ε ∈ (0, 1], by µε(x, y) := Uε
−1µ(Uεx, Uεy) ∀ x, y ∈ V . If for any

x, y ∈ V there exists the limit limε→+0 µε(x, y) =: µ0(x, y), then g0 = (V, µ0) is a well-de�ned Lie
algebra and is called a contraction of the Lie algebra g = (V, µ). The procedure g → g0 providing
g0 from g is also called a contraction. If a basis of V is �xed, the parameter matrix Uε = U(ε),
ε ∈ (0, 1], is called the contraction matrix of the contraction g→ g0.

De�nition 2. The contraction g → g0 is called a In�on�u�Wigner (IW) contraction if its matrix
Uε can be represented in the form Uε = AWεP , where the matrices A and P are nonsingular and
constant (i.e., they do not depend on ε) and Wε = diag(εα1 , . . . , εαn) for some α1, . . . , αn ∈ R. The
n-tuple of exponents (α1, . . . , αn) is called the signature of the generalized IW-contraction g→ g0.
A simple IW-contraction is a generalized IW-contraction with signature consisting of zeros and ones.

The following assertion, which stood as a conjecture for a long time, was proved in [5].

Theorem 3. Any generalized IW-contraction is equivalent to a generalized IW-contraction with an
integer signature (and the same associated constant matrices).

One of these conjectures was that any contraction of Lie algebras can be realized as a general-
ized IW-contraction. This is true for contractions between three-dimensional real or complex Lie
algebras. Consider four-dimensional real Lie algebras de�ned, up to antisymmetry of Lie bracket,
by the following nonzero commutation relations:

2A2.1 : [e1, e2] = e1, [e3, e4] = e3;

A1 ⊕A3.2 : [e2, e4] = e2, [e3, e4] = e2 + e3;

A4.1 : [e2, e4] = e1, [e3, e4] = e2;

A4.10 : [e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1.

Hereafter we use the Mubarakzyanov's nomenclature for low-dimensional Lie algebras, and g...
denotes the complexi�cation of the algebraA.... All contractions of four-dimensional real Lie algebras
were realized in [1, 2] via generalized IW-contractions except two contractions, 2A2.1 → A1 ⊕ A3.2

and A4.10 → A1 ⊕A3.2. Since the complexi�cations of the algebras 2A2.1 and A4.10 are isomorphic,
there was only one exception for the complex case, 2g2.1 → g1 ⊕ g3.2.

Theorem 4 ([4]). (i) There exists a unique contraction between four-dimensional complex Lie al-
gebras, 2g2.1 → g1 ⊕ g3.2, that is not equivalent to a generalized IW-contraction.
(ii) Precisely two contractions between four-dimensional real Lie algebras, 2A2.1 → A1⊕A3.2 and

A4.10 → A1 ⊕A3.2, cannot be realized as generalized IW-contractions.
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Combining the results of [1, 2, 4] also yields the following assertion.

Theorem 5 ([4]). Any generalized IW-contraction between four-dimensional complex (resp. real)
Lie algebras is equivalent to one with parameter exponents in {0, 1, 2, 3}. The exponents in {0, 1, 2}
su�ce for all such contractions except 2A2.1 → A4.1, A4.10 → A4.1 and so(3) ⊕ A1 → A4.1 in the
real case and 2g2.1 → g4.1 in the complex case, where the minimal tuple of exponents is (3, 2, 1, 1).

De�nition 6. The contraction g→ g0 is called diagonal if its matrix Uε can be represented in the
form Uε = AWεP , whereA and P are constant nonsingular matrices andWε = diag(f1(ε), . . . , fn(ε))
for some continuous functions fi : (0, 1]→ F\{0}.
Theorem 7 ([5]). Any diagonal contraction is equivalent to a generalized IW-contraction with an
integer signature.

Consider the n-dimensional (n > 5) solvable real Lie algebras a := A5.38 ⊕ (n − 5)A1 and a0 :=
A2.1 ⊕ A2.1 ⊕ (n − 4)A1 whose nonzero commutation relations are exhausted, up to antisymmetry
of Lie bracket, by the following:

a : [e1, e3] = e3, [e2, e4] = e4, [e1, e2] = e5, a0 : [e1, e3] = e3, [e2, e4] = e4.

Theorem 8 ([3]). The Euclidean norm of any contraction matrix that realizes the contraction of the
algebra a to the algebra a0 approaches in�nity at the limit point. The same is true for the complex
counterpart of this contraction.

De�nition 9. A realization of a contraction with a matrix-function that is linear in the contraction
parameter is called a Saletan (linear) contraction.

Theorem 10 ([6]). Up replacing the algebras g and g0 with isomorphic ones, every Saletan con-
traction g→ g0 is realized by a matrix of the canonical form

En0 ⊕ Jn1
ε ⊕ · · · ⊕ Jnsε , or, equivalently, En0 ⊕ Jn1

0 ⊕ · · · ⊕ Jns0 + εEn,

where n0 + · · ·+ns = n, Em is the m×m identity matrix, and Jmλ denotes the m×m Jordan block
with an eigenvalue λ.

Hence any Saletan contraction can be realized by a matrix of the form ASεB, where A and B
are constant nonsingular matrices and the matrix-valued function Sε is in the above canonical form.
The tuple (n0;n1, . . . , ns), where n1, . . . , ns constitute a partition of the dimension n − n0 of the
Fitting null component relative to U0 and n0 ∈ {0, . . . , n}, is called the signature of this Saletan
contraction.
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Geometric and Topological properties of self similar sets are well understood when the associated
Iterated Function System (IFS) satis�es Open Set Condition (OSC)[1]. OSC fails if IFS is said to
have overlaps. Lau and Ngai in [2] introducedWeak separation property (WSP) which allows limited
overlaps of copies and is less restrictive than OSC. This separation property was extensively studied
by Zerner [3]. The notion of separation allows to explicitly calculate the Hausdor� dimension of
self-similar sets. But it can be still challenging. Another notion of separation termed as Finite Type
Condition (FTC) introduced in [3] by , which enhances the domain of self similar sets. The question
of equivalence was �rst raised in [4], they proved that it was not true in general for d > 1 IFS in
Rn. We characterise Weak separation property in terms of neighbourhood sets.

Notations and De�nitions

Let S = {S1, ..., Sm} be system of contracting maps on R : |Si(x) − Sj(y)| = ri|x − y|, where
1 > ri > 0. Then ∃ unique compact set K such that K =

⋃m
i=1 Si(K). K is called self similar

set associated to IFS S. OSC states that there is an open set O 6= φ such that Si(O) ⊆ O and
Si(O) ∩ Sj(O) = φ for i, j ∈ {1, ...,m}. Let I = {1, ...,m} be �nite set of symbols and and i, j be
words from I∗ =

⋃{In : n = 1, 2, ...}. From [5] consider the following :

F = {S−1
i · Sj ; i, j ∈ I∗}

subset of topological group G of all similarities on R. From [6] given any a > 0, let

Ia = {i = i1i2 . . . in ∈ I∗; |ri| < a ≤ |ri1i2...in−1 |}
IFS satisfy weak separation property if there are x ∈ R and integer l ∈ N such that for any a > 0 and
�nite word σ, every closed ball with radius a, contains atmost l distinct elements of type Si((Sσ(x))
for i ∈ Ia.
De�nition : 1 - The notion of Neighbourhood Sets de�ned in [7] is very helpful to study �nite

type condition. For α ∈ Z, let h1, ..., hmα be elements of set {Si(0), Si(1) : i ∈ Ia}. Let F be union
of all possible net intervals such that

Fα = {[hi, hi+1] : 1 ≤ i ≤ mα}
Suppose 4 ∈ F and denote contraction map T4(x) = rx+ c where r > 0 such that T4([0, 1]) = 4.
Similarity T (x) = Lx+ c is neighbourhood set of Fa if ∃ i ∈ Ia such that

4 ⊆ Si([0, 1]) and T = T−1
4 ◦ Si

De�nition : 2 IFS satis�es �nite neighbourhood condition if it has �nite neighbourhood set.
The main result follows the following lemma.

Lemma : 1 Presume that �nite neighbourhood condition holds for system S. Then ∃ l > 0 such
that any 1 ≥ a > 0, i, j ∈ Ia and p, q ∈ {0, 1} either

Si(p) = Sj(q) or |Si(p)− Sj(q)| ≥ la
Lemma : 2 Suppose that K = [0, 1] is self similar set of IFS S and WSP holds. For δ > 0, ∃ a

�nite set Nδ so that for any a > 0 and i, j ∈ Ia either
µ(Si([0, 1]) ∩ Sj([0, 1])) < δa or S−1

i ◦ Sj ∈ Nδ
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Theorem : Let K = [0, 1] be the self similar set associated to system of contraction maps S
such that weak separation property holds. Then �nite neighbourhood condition is satis�ed for S.
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Cosmology and Big data or data analysis, of which topo-geometrical data analysis is rapidly
becoming a main component, are both burgeoning and increasingly related �elds at the moment.
Cosmology is transitioning from a theoretical discipline towards one with increased focus on obser-
vations, resulting in a massive surge of data that demands increasingly more sophisticated methods
to glean meaningful information. In a related development, geometry and topology have witnessed
a tilt from purely theoretical �elds towards strong focus on application. A foray into �big data�
quickly brings to front two of the central statistical challenges of our times � detection and classi�-
cation of structure in extremely large, high-dimensional, data sets. Among the most intriguing new
approaches to this challenge is �TDA,� or �topological data analysis,� the primary aim of which is
providing topologically informative pre-analyses of data, which serve as input to more quantitative
analyses at a later stage. Algebraic and computational topology are the foundational pillars on
which TDA rests.
I will present a survey on the theoretical and computational aspects of topological data analysis

[1], simultaneously exploring up the application component via analyses of cosmological datasets.
The dataset we will focus on is of the Cosmic Microwave Background, obtained by the recently
concluded Planck mission, with a view to compare the observations with the predictions of the
standard cosmological model, that predicts the initial conditions in the Universe to be that of an
isotropic, homogeneous Gaussian random �eld [2]. At the epoch of recombination in the infant
stage of the Universe, some 370,000 years after the Big Bang, matter and radiation separate for the
�rst time, and radiation permeates freely in the Universe. This free-streaming radiation, that we
observe as the Cosmic Microwave Background, encodes a treasure trove of information about the
initial conditions and properties of matter distribution in the Universe [3].

The tentative outline of my presentation, in three parts, is as follows:

• A review of the theoretical background on geometry and topology consisting of Minkowski
functionals, homology and its hierarchical extension persistent homology.
• A description of the main computational components for a variety of settings relevant to
cosmological data sets, such as particle distributions and images in 2D and 3D. I will give
a brief but in-depth account of the computational backbone, which relies on appropriate
meshing of the domain, and hierarchical embedding of levelsets in �ltration data structure.
• Building up on the �rst and the second item, I will present case studies involving the CMB
and the SDSS dataset.

The above mentioned tentative structure is subject to time constraints, and the second item may
be expunged for short duration of talk.
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A �ow X on a manifold with boundary ∂M is called a Morse �ow if it satis�es the following
conditions:

(1) the set of non-wandering points Ω(X) has a �nite number of points that all are hyperbolic;
(2) if u, v ∈ Ω(X), then the unstable manifoldW u(u) is transverse to the stable manifoldW s(v)

in IntM ;
(3) the restriction of X to ∂M is a Morse �ow (the stable and unstable manifolds have a

transversal intersection).

We consider Morse �ows with singularities on ∂M . There are 6 types of singularities which are
determined by their indices.
The pair (p, q) is called the index of a singular point where p+ q is equal to dimension of stable

manifold of X and p is the dimension of the �ow restricted to the boundary. In this case p = 0, 1
or 2 and q = 0 or 1. For example, a source has index (0,0) and a sink has index (2,1).
The surface F is the closure of intersection of Int M with boundary of a regular neighborhood

for the union of the 1-dimensional stable manifolds.
Arcs and circles {u, U, v, V } on F are intersections of unstable manifolds for singular points of

index (1,0), (0,1),(1,1),(2,0) and the surface F .
The set (F, u, U, v, V ) consisting of a surface with boundary, a set of circles and arcs embedded

in it as described above is called a Morse �ow diagram.

Theorem 1. Two Morse-Smale �ows on 3-manifold with a boundary are topologically trajectory
equivalent if and only if their diagrams are homeomorphic.

Morse �ow diagrams have the following properties:

(1) Ui, Vi ⊂ IntM , Intui, Intvi ⊂ IntM , ∂ui, ∂vi ⊂ ∂M ;
(2) ∂Ui∂ ∪i ui, ∂Vi∂ ∪i vi;
(3) Ui ∩ Uj = ∅ if i 6= j, ui ∩ uj = ∅ if i 6= j, Vi ∩ Vj = ∅ if i 6= j, vi ∩ vj = ∅ if i 6= j,

ui ∩ Uj = ∅, vi ∩ Vj = ∅, ∂ui ∩ ∂vj = ∅.
(4) Uk is a closed curve or it belongs to a left-hand turn cycle which consists of Ui and uj ; the

similar property holds true for Vk.
(5) if we cut F along ui and do spherical surgeries by U -cycles then we get a union of 2-disks.

Theorem 2. If a surface F with 4 sets of curves has the properties 1-5, then it is a diagram of a
Morse �ow.
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Let Rm,n be the set of m × n matrices over a commutative ring R with identity e 6= 0. Denote
by In the identity n× n matrix and by 0m,n the zero m× n matrix. For any matrix A ∈ Rm,n A

t

denotes the transpose of A. We will denote by GL(m,R) the set of invertible matrices in Rm,m. We
will write C↓i for the the i-th column of the matrix C ∈ Rm,n and vec (C) will denote an ordered
stock of columns of C, i.e.,

vec (C) =




C↓1
C↓2
...

C↓n


 .

In this note we present alternative methods for �nding solutions of the Sylvester matrix equation

AX − Y B = C, (1)

where A,B and C are given matrices of suitable sizes over a commutative domain.
This equation has been considered by several authors including Roth [12] over a �eld, Hartwig

[6] over a regular ring, Gustafson [5] over a commutative ring with identity, Emre and Silverman

[3] over a polynomial ring, �Ozg�uler [7] over a principal ideal domain, Daji�c [2] over an associative
ring with unit. In general, Gustafson [5] has proved that equation (1) over a commutative ring R

with identity has a solution (X,Y ) over R if and only if the matrices

[
A C
0 B

]
and

[
A 0
0 B

]
are

equivalent. This is a generalization of Roth's result [12], which gives the same criterion for the case,
where R is a �eld. Similar considerations on solvability of equation (1) can be found in original
paper [1].
1. Let R be a Bezout domain. Without reducing the generality we will assume that A ∈ Rm,m,

B ∈ Rn,n and C ∈ Rm,n, ànd X,Y are unknown m × n matrices over R. Using the Kronecker
product matrix equation (1) may be considered in the form of equivalent linear system (see [4])

(In ⊗A) vec (X)−
(
Bt ⊗ Im

)
vec (Y ) = vec (C).

Theorem 1. Matrix equation (1) over Bezout domain R is solvable if and only if matrices
[
(In ⊗A)

(
Bt ⊗ Im

)
0mn,1

]
and

[
(In ⊗A)

(
Bt ⊗ Im

)
vec (C)

]

are column equivalent, i.e., the right Hermite normal forms of these matrices are the same.

Corollary 2. Let Ai ∈ Rm,m, Bi ∈ Rn,n and Ci ∈ Rm,n, i = 1, 2. Matrix equations A1X − Y B1 =
C1 and A2X − Y B2 = C2 have a common solution over Bezout domain R if and only if matrices

[
(In ⊗A1)

(
Bt

1 ⊗ Im
)

0mn,1
(In ⊗A2)

(
Bt

2 ⊗ Im
)

0mn,1

]
and

[
(In ⊗A1)

(
Bt

2 ⊗ Im
)

vec (C1)
(In ⊗A2)

(
Bt

2 ⊗ Im
)

vec (C2)

]

are column equivalent, i.e., the right Hermite normal forms of these matrices are the same.

We were using results of papers [9] and [10] for proving Theorem 1.

2. In this parch R is a principal ideal domain. We denote by (a, b) the greatest common divisor
of nonzero elements a, b ∈ R. Let A ∈ Rm,m and rankA = r. For the matrix A there exist matrices
U, V ∈ GL(m,R) such that UAV = SA = diag(a1, a2, . . . , ar, 0, . . . , 0) is the Smith normal form of
A.
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Theorem 3. Let A ∈ Rm,m, B ∈ Rn,n, C ∈ Rm,n and rankA = p, rankB = q. Further, let
UA, VA ∈ GL(m,R) and UB, VB ∈ GL(m,R) such that

UAAVA = SA = diag(a1, a2, . . . , ap, 0, . . . , 0), UBBVB = SB = diag(b1, b2, . . . , bq, 0, . . . , 0).

Matrix equation (1) is solvable over R if and only if

UACVB =




f11 . . . f1q
...

. . .
...

fp1 . . . fpq

0p,n−q

0m−p,q 0m−p,n−q


 and (ai, bj)|fij (divides)

for all i = 1, 2, . . . , p i j = 1, 2, . . . , q.

It is clear that if matrices A ∈ Rm,m and B ∈ Rn,n are nonsingular and (detA,detB) = e, then
matrix equation (1) is solvable for an arbitrary matrix C ∈ Rm,n.
Suppose that matrix equation (1) is solvable under the conditions of Theorem 3. Then for

invariant factors ai and bj of matrices A and B respectively there exist αij , βij ∈ R such that
aiαij − βijbj = fij for all i = 1, 2, . . . , p and j = 1, 2, . . . , q. Put

Xα =



α11 . . . α1q
...

. . .
...

αp1 . . . αpq


 and Yβ =



β11 . . . β1q
...

. . .
...

βp1 . . . βpq


 .

Then for arbitrary matrices P12, Q12 ∈ Rp,n−q, P21, Q21 ∈ Rm−p,q and P22, Q22 ∈ Rm−p,n−q the pair
of matrices

XP = V −1
A

[
Xα P12

P21 P22

]
V −1
B and YQ = U−1

A

[
Yβ Q12

Q21 Q22

]
U−1
B

is the general solution of matrix equation (1). We note that Theorem 3 can be used for �nding
solutions with some properties of equation (1) (see [8] and [11]).
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We analyzed in detail the cohomology structure of the symplectic form deformation and ap-
plied recently developed generalized transformations which were suggested in the classical works by
Enneper and Weierstrass about one and half century ago and succeeded in reformulating the "sym-
plectic" modi�cation of the Monge-Ampere equation by means of specially constructed coordinates,
related with the natural projector expansion on T (P2(C)) and found its special solutions. Let us
consider a compact complex n-dimensional manifold Mn, endowed with the K�ahler symplectic
form ω ∈ Λ2(Mn) and de�ne the related Monge-Ampere equation, describing a deformation of this
symplectic structure:

(ω + i∂∂̄ϕ)n = (exp f)ωn (1)

under the normalizing conditions
∫

Mn

(exp f)ωn =

∫

Mn

ωn,

∫

Mn

ϕωn = 0, (2)

where ϕ ∈ C∞(Mn;R) is a real valued function on Mn and ∂̄ is the complex ∂-bar di�erential,
corresponding to the standard di�erential splitting d = ∂ ⊕ ∂̄ : Λ(Mn) → Λ(Mn) on the complex
manifold Mn. In a general case it was supposed [16] that if the two-form

(
ω + i∂∂̄ϕ

)
∈ Λ2(Mn)

is real valued and the �rst Chern class c1(Mn) = 0 of a K�ahler manifold Mn, then there exists a
Riemannian metric g : T (Mn)×T (Mn)→ R of the Calabi-Yau type, whose holonomy group [5, 8]
coincides with a subgroup of the Lie group SU(2), generating, in particular, a so called Einsteinian
metric. The equation (1) is always [16] solvable, yet its holonomy groups, in general, not classi�ed
and its unitarity remains to be open.
We here also remark that there exists a slightly di�erent modi�ed Monge-Ampere type deforma-

tion equation

(ω + dJ∗dϕ)n = (exp f)ωn, (3)

on a real symplectic manifold M̄2n ' Mn, where f ∈ C∞(M̄2n;R) and J : T (M̄2n) →
T (M̄2n), J2 = −I, is a suitably chosen nonintegrable quasi-complex structure on the manifold
M̄2n and J∗ : T ∗(M̄2n) → T ∗(M̄2n) denotes its conjugate. It was proved [2] that if the structure
J : T (M̄2n)→ T (M̄2n) is integrable, then the equation (3) reduces to the Monge-Ampere equation
(1) on the related complex manifold Mn ' M̄2n owing to the classical Newalander-Nirenberg [10]
criterion. Otherwise, if the equation (3) is solvable for its arbitrarily chosen right hand side, then
the quasi-complex structure J : T (M̄2n) → T (M̄2n) proves to be necessary [2, 9, 11] a complex
one, once more reducing the equation (3) to the Monge-Ampere equation (1).
In our note we are interested in the following "symplectic" modi�cation

(ω + ddsϕ)2 = (exp f)ω2 (4)
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of the Monge-Ampere (1) on the complex K�ahler manifold M2 = P2(C), where ϕ ∈ Λ2(M2) is a
searched for two-form and ds := (−1)k+1 ?s d?s, dd

s = −dsd, denotes the symplectic Hodge type
di�erentiation. It is well known that any compact two-dimensional K�ahler manifold M2 with the
Chern class c1(M2) = 0 is hiper-K�ahler, possessing exactly three K�ahler fundamental forms ωI , ωJ
and ωK ∈ Λ2(M̄4), corresponding to three complex structures I, J and K : T (M̄4)→ T (M̄4). As for
the compact projective two-dimensional K�ahler manifold M2 = P2(C) the Chern class c1(M2) 6= 0,
it is not hiper-K�ahler, its holomorphic volume two- form is not composed of the symplectic forms
ωJ and ωK ∈ Λ2(M̄4). Notwithstanding this fact, based on the equalities (??) and the well known
[1, 14, 15] relationship

?s η = −η (5)

for an arbitrary "primitive" holomorphic volume two-form η ∈ Λ2
hol(M

2), satisfying the additional
condition η ∧ ω = 0, one easily derives that for any two cohomological "primitive" holomorphic
volume two-forms Ω1 and Ω2 ∈ Λ2

hol(M
2) there holds the following interesting relationship:

Ω1 − Ω2 = ddsψ (6)

for some smooth two-from ψ ∈ Λ2(M2), solving the problem (4) for the case when the symplectic
structure ω ∈ Λ2(M2) is replaced by a holomorphic volume form Ω ∈ Λ2

hol(M
2). Having analyzed

in detail the cohomology structure of the two-form expression (ω + ddsϕ) ∈ Λ2(M2) and ap-
plied generalized transformations which were suggested in the classical works by Enneper [4] and
Weierstrass [13] about one and half century ago and recently developed in [6], we succeeded
in reformulating the "symplectic" modi�cation of the Monge-Ampere (4) by means of specially
constructed coordinates, related with the natural projector expansion from in P2(C) and �nd its
special solutions.
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Let G be a compact abelian group, Γ be its dual group, i.e., the set of all continuous characters
on G. C(G), Lp(G), 0 < p ≤ ∞, are classical Banach spaces (integrals are considered with respect
to the Haar measure on G). M(G) denotes the Banach space of all regular Borel measures on G.
Convolution operations are de�ned by the usual ways and are denoted by ϕ ? f, µ ? f for functions
f, ϕ and a measure µ ∈ M(G). Below, H denotes a Hilbert space, Sp(H), for p ∈ (0,∞), is the
space of operators in H from Shatten-von Neumann class Sp (operators, whose singular numbers
are in the classical space lp). By S∞ we denote the space of all operators in H. X, Y are Banach
spaces, L(X,Y ) is a Banach space of all bounded linear operators from X to Y .

De�nition 1. An operator T : X → Y can be factored through an operator from Sp(H) (through an
Sp-operator), if there are operators A ∈ L(X,H), U ∈ Sp(H) and B ∈ L(H,Y ) such that T = BUA.
If T can be factored through an operator from Sp(H), then we put γSp(T ) = inf ||A||σp(U) ||B||,
where the in�mum is taken over all possible factorizations of T through an operator from Sp(H).

In [1], Giles Pisier gave a geometric characterization of Sidon subsets of Γ (for the de�nitions and
formulations see [1, �4.b]). One of the main tool in his proof was the following result: For a function
f ∈ C(G) and a convolution operator ?f : M(G) → C(G), the necessary and su�cient condition

for the set of Fourier coe�cients f̂ := {f̂(γ)} to be absolutely summable is that the operator ?f can
be factored through a Hilbert space. It is clear that the last condition is the same as the condition
"the operator ?f can be factored through an S∞-operator".
We present some generalizations of this result (proving simultaneously the above one). In par-

ticular, we have

Theorem 2. Let f ∈ C(G), 0 < q ≤ 1 and 1/p = 1/q − 1. Consider a convolution operator

?f : M(G) → C(G). The set f̂ of Fourier coe�cients of f belongs to lq if and only if the operator
?f can be factored through a Schatten-von Neumann Sp-operator in a Hilbert space. Moreover, if

f̂ ∈ lq, then γSp(?f) = (
∑

γ∈Γ |f̂(γ)|q)1/q. On the other hand, || ? f || = ||f ||C(G).

Instead of M(G), we can consider the spaces Lp(G) in the theorem (changing some values of
parameters). Also, we can get some similar results for the factorizations of the convolution operators
through the operators of the Lorentz-Schatten classes Sr,p (associated with the Lorentz sequences
spaces lr,p).
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We shall say that a set P is of the type Gτ in X if there exists a family
γ = {Uα : α ∈ A, | A |≤ τ} of open sets in X such that

⋂
α∈A Uα = P (taken from [1]).

A subset A ⊂ X is said to be τ -placed in X, if for each x ∈ X \ A there exists a set P ⊂ X of
type Gτ in X such that x ∈ P ⊂ X \A (taken from [1]).
A permutation group X is the group of all permutations ( i.s. one-one and onto mappings X → X

). A permutation group of a set X is usuallay denoted by S(X). If X = {1, 2, ..., n}, then S(X) is
denoted by Sn, as well.
LetXn be the n-th power of a compactX. The permutation group Sn of all permutations, acts on

the n-th power Xn as permutation of coordinates. The set of all orbits of this action with quotient
topology we denote by SPnX. Thus, points of the space SPnX are �nite subsets (equivalence
classes) of the product Xn. Thus two points (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Xn are considered to
be equivalent if there is a permutation σ ∈ Sn such that yi = x(σ(i)) for all i = 1, 2, ..., n. The
space SPnX is called n-permutation degree of a space X. Equivalent relation by which we obtained
space SPnX is called the symmetric equivalence relation. The n-th permutation degree is always
a quotient of Xn. Thus, the quotient map is denoted by as following: πsn : Xn → SPnX. Where
for every x = (x1, x2, ..., xn) ∈ Xn, πsn((x1, x2, ..., xn)) = [(x1, x2, ..., xn)] is an orbit of the point
x = (x1, x2, ..., xn) ∈ Xn.
The concept of a permutation degree has generalizations. Let G be any subgroup of the group

Sn. Then it also acts on Xn as group of permutations of coordinates. Consequently, it generates
a G-symmetric equivalence relation on Xn. This quotient space of the product of Xn under the
G-symmetric equivalence relation is called G-permutation degree of the space X and it is denoted
by SPnGX. An operation SPnG is also the covariant functor in the category of compacts and it is
said to be a functor of G-permutation degree. If G = Sn, then SP

n
G = SPn. If the group G consists

only of unique element, then SPnGX = Xn (taken from [2]).

Theorem 1. If the set SPnA is τ -placed in SPnX, then the set (πsn)−1(SPnA) is also τ -placed in
Xn.
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Let the surface F of the class Ck(k ≥ 2) in R1
3 be given by the vector function r = r(u, v) in the

region D ∈ R1
2, we will assume that the Cartesian coordinates R1

3 are entered in x, y, z, and let kbe
the unit vector of the axis z. Each of the coordinates of the vector r(u, v) = {u, y(u, v), z(u, v)}
satis�es a certain di�erential equation. Let's deduce it, for example, for function z(u, v).
Obviously, z(u, v) = (r(u, v), k). Then

zu = (ru, k) , zv = (zv, k) , zuu = (ruu, k), zuv = (ruv, k), zvv = (rvv, k).

Using derivation formulas in R1
3 we get

zuu = Γ2
11zv + L(n, k), zuv = Γ2

12zv +M(n, k), zvv = Γ2
22zv +N(n, k) (1)

Where L,M,N is the coe�cients of the second quadratic form, n is the surface normal.
If we introduce the notation

z11 = zuu − Γ2
11zv, z12 = zuv − Γ2

12zv, z22 = zvv − Γ2
22zv (2)

then from (1) and (2) we obtain

z11 = L(n, k), z12 = M(n, k), z22 = N(n, k) (3)

The unit normal vector is determined by the formula

n =

{
0,

zv√
y2
v + z2

v

, − yv√
y2
v + z2

v

}
.

We have
(n, k) = − yv√

y2
v + z2

v

(4)

the for formula above gives a determination for the unit normal vector.
From (3) and (4) we obtain.

L = −z11

yv

√
y2
v + z2

v , M = −z12

yv

√
y2
v + z2

v , N = −z22

yv

√
y2
v + z2

v (5)

From equalities (5) and the formula for the Gaussian curvature K = LN−M2

G we obtain the

Darboux equation z11z22 − z2
12 = y2

vK.
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On countable multiplicity of mappings
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A number of papers of mathematicians are devoted to the study of countable-to-one mappings, in
particular M.M. Luzin, P.S. Alexandrov, A.M. Kolmogorov, B.O. Pasynkov, Yu.Yu. Trokhymchuk.
In [1] a dense open set of points of local homeomorphism exists for any countable-to-one continuous
mapping of two manifolds of equal dimensions was proved. Moreover, for the existence of a dense set
of points of local homeomorphism, it su�ces to require countable multiplicity of zero-dimensional
mapping, even for points of some subset of the second category in the image [2]. In the one-
dimensional case, the statement of the theorem remains valid for nowhere constant functions of
the �rst Baire class with the Darboux property and with the set of countable levels of the second
category in the image [3]. In paper [4] we consider the class of continuous on [0, 1] functions
preserving digit 1 in three-symbol Q3�representation of a number and prove that any such function
is countable-to-one and it has at most two in�nite level sets. If we neglect some set of the �rst
category, then with countable-to-one arbitrary B-measurable mapping of complete separable zero-
dimensional uncountable space there exists a dense set of points of local homeomorphism [5]. It
turns out that if quasi-continuous mapping of two complete separable metric spaces with the set of
countable levels of the second category is nearly continuous on dense open set and is semi-open and
pre-open, then it has a dense open set of points of local homeomorphism.
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Recall that a triangular norm is a binary operation ∗ on the unit segment which is continuous, as-
sociative, commutative, monotone, for which 1 is the unit. The following are examples of triangular
norms: min, · (multiplication), a ∗ b = max{a+ b− 1, 0} ( Lukasiewicz t-norm).
Given a triangular norm ∗, we de�ne a fuzzy metric on a setX as a functionM : X×X×(0,∞)→

(0, 1] satisfying for all x, y, z ∈ X and s, t ∈ (0,∞):

(1) M(x, y, t) > 0;
(2) M(x, y, t) = 1 if and only if x = y;
(3) M(x, y, t) = M(y, x, t);
(4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);
(5) the function M(x, y, ·) : (0,∞)→ [0, 1] is continuous

(see, e.g., [2]).
A fuzzy metric is said to be a fuzzy ultrametric (a fuzzy non-Archimedean metric) if ∗ = min and

the following holds: (4')M(x, y, t)∗M(y, z, s) ≤M(x, z,max{t, s}). This is known to be equivalent
to the following: (4�) M(x, y, t) ∗M(y, z, t) ≤M(x, z, t).
By I(X) we denote the set of all idempotent measures on a compact Hausdor� space X (see [5]).

This set is endowed with the weak* topology. In this way we obtain a functor in the category of
compact Hausdor� spaces and continuous maps.
A standard construction allows us to consider the set of idempotent measures of compact support

for any Tychonov space X; we keep the notation I(X) for this set.
Let (X,M) be a fuzzy ultrametric space. A fuzzy ultrametric M̄ on the set I(X) is de�ned in

[3]. The construction (I(X), M̄) determines a functor in the category of fuzzy ultrametric spaces
and non-expanding maps.
We continue the investigations of the mentioned paper as follows. The idempotent measure

monad on the category of fuzzy ultrametric spaces is an idempotent counterpart of the probability
measure monad on the same category which is introduced and investigated in [4]. Also, one can
prove analogous results for the functor and monad of another class of non-additive measures, namely
the max-min measures (see, e.g., [1]).
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The kinetic Boltzmann equation is one of the central equations in classical mechanics of many-
particle systems. For the model of hard spheres it has a form [1, 2]:

D(f) = Q(f, f). (1)

We will consider the continual distribution [3]:

f =

∫

R3

du

+∞∫

0

dρϕ(t, x, u, ρ)M(v, u, x, ρ), (2)

which contains the local Maxwellian of special form describing the screw-shaped stationary equilib-
rium states of a gas (in short-screws or spirals). They have the form:

M(v, u, x, ρ) = ρ

(
β

π

) 3
2

e−β(v−u−[ω×x])2
. (3)

Physically, distribution (3) corresponds to the situation when the gas has an inverse temperature
β = 1

2T and rotates in whole as a solid body with the angular velocity ω ∈ R3 around its axis on

which the point x0 ∈ R3 lies,

x0 =
[ω × u]

ω2
, (4)

The square of this distance from the axis of rotation is

r2 =
1

ω2
[ω × (x− x0)]2, (5)

ρ is the arbitrary density, u ∈ R3 is the arbitrary parameter (linear mass velocity for x), for which
x||ω, and u + [ω × x] is the mass velocity in the arbitrary point x. The distribution (3) gives not
only a rotation, but also a translational movement along the axis with the linear velocity

(ω, u)

ω2
ω,

Thus, it really describes a spiral movement of the gas in general, moreover, this distribution is
stationary (independent of t), but inhomogeneous.
The purpose is to �nd such a form of the function ϕ(t, x, u, ρ) and such a behavior of all hydro-

dynamical parameters so that the uniform-integral remainder [3]

∆ = sup
(t,x)∈R4

∫

R3

|D(f)−Q(f, f)|dv, (6)

and its modi�cation "with a weight":

∆̃ = sup
(t,x)∈R4

1

1 + |t|

∫

R3

|D(f)−Q(f, f)|dv, (7)

become vanishingly small.
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Also some su�cient conditions to minimization of remainder ∆ and ∆̃ are found. In this work
we succeeded a few to generalize results, which obtained in [3]. The obtained results are new and
may be used with the study of evolution of screw and whirlwind streams.
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We report on the paper [4] . Hitchin [3] had produced a pair of solutions λ±0 for the Painlev�e VI
di�erential equation from an SL2(C) action on the trivial bundle E0 → P 3 over complex projective
space. We generalize to produce PVI solutions λ±m for each nonnegative integer m from SL2(C)
actions on the equivariant instanton bundles Em → P 3 constructed in [2] via an equivariant version
of the Atiyah-Drinfeld-Hitchin-Manin construction [1].

Theorem 1. For each nonnegative integer m, the equivariant instanton bundle Em yields a pair
of explicitly computable algebraic Painlev�e VI solutions λ±m(t), expressed implicitly in terms of the
rational function

t(w) =
(1 + w) (−3 + w)3

(−1 + w) (3 + w)3

and a rational function of the form

λ±m(w) =

(
(−3 + w)2

(−1 + w) (3 + w)

)
(−1 + w2) f±m(w) + 8 g±m(w)

(3 + w2) f±m(w)− 24 g±m(w)
,

where f±m and g±m are even polynomials of degree at most 2m(m+ 1).

We have found explicit Okamoto transfromations Q±1 relating the two hierarchies of solutions λ±m
in a manner reminiscent of the familiar creation operators for eigenstates of the quantum harmonic
oscillator. The following was proved case-by-case for a �nite number of nonnegative integers m, and
conjectured to hold for all nonnegative integers m:

Theorem 2. For each nonnegative integer m ≤ 4,

λ+
m = Qmλ+

0 , λ−m = Q−mλ−0 .

We interpret each �creation operator" Q±1 as a �shadow" of a putative creation operator for equi-
variant instanton bundles Em, which is indicated by the dashed arrows in the summary diagram:

λ+
0 λ+

1 λ+
2 λ+

3 λ+
4

E0 E1 E2 E3 E4

λ−0 λ−1 λ−2 λ−3 λ−4

Q Q Q Q

Q−1 Q−1 Q−1 Q−1

.
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Let Lp, 1 ≤ p ≤ ∞, and C be the spaces of 2π�periodic functions with standart norms ‖ · ‖p and
‖ · ‖C , respectively.
Denote by Cψ

β̄,p
, 1 ≤ p ≤ ∞, the set of all 2π-periodic functions f , representable as convolution

f(x) =
a0

2
+

1

π

π∫

−π

ϕ(x− t)Ψβ̄(t)dt, a0 ∈ R, ϕ ∈ B0
p = {g ∈ Lp : ‖g‖p ≤ 1, g ⊥ 1}, (1)

with a �xed generated kernel Ψβ̄ ∈ Lp′ , 1/p+ 1/p′ = 1, the Fourier series of which has the form

S[Ψβ̄](t) =
∞∑

k=1

ψ(k) cos

(
kt− βkπ

2

)
, βk ∈ R, ψ(k) ≥ 0. (2)

A function f in the representation (1) is called (ψ, β̄)-integral of the function ϕ and is denoted

by J ψ
β̄
ϕ (f = J ψ

β̄
ϕ). If ψ(k) 6= 0, k ∈ N, then the function ϕ in the representation (1) is called

(ψ, β̄)-derivative of the function f and is denoted by fψ
β̄

(ϕ = fψ
β̄

). The concepts of (ψ, β̄)-integral

and (ψ, β̄)-derivative was introduced by Stepanets (see [4]). Since ϕ ∈ Lp and Ψβ̄ ∈ Lp′ , then the

function f of the form (1) is a continuous function, i.e. Cψ
β̄,p
⊂ C (see [4, Proposition 3.9.2.]).

In the case βk ≡ β, β ∈ R, the classes Cψ
β̄,p

are denoted by Cψβ,p. For ψ(k) = k−r, r > 0, the classes

Cψ
β̄,p

and Cψβ,p are denoted by W r
β̄,p

and W r
β,p, respectively. The classes W r

β,p are the well-known

Weyl-Nagy classes. For ψ(k) = e−αk
r
, α > 0, r > 0, the classes Cψ

β̄,p
and Cψβ,p are denoted by Cα,r

β̄,p

and Cα,rβ,p , respectively. The sets C
α,r
β,p are well-known classes of the generalized Poisson integrals.

Let N be some functional class from the space C (N ⊂ C). The quantity

En(N)C = sup
f∈N

En(f)C = sup
f∈N

inf
Tn−1∈T2n−1

‖f − Tn−1‖C (3)

is called the best uniform approximation of the class N by elements of the subspace T2n−1 of
trigonometric polynomials Tn−1 of the order n− 1.

The order estimates for the best approximations En(K)C of classes K = Cψ
β̄,p
, 1 ≤ p ≤ ∞, (and,

hence, classes W r
β,p, C

α,r
β,p and C

ψ
β,p) depending on rate of decreasing to zero of sequences ψ(k) were

obtained, in particular, in the works of Temlyakov (1993), Hrabova and Serdyuk (2013), Serdyuk
and Stepanyuk (2014) etc.
If the sequences ψ(k) decrease to zero faster than any geometric progression, then asymptotic

equations of the best uniform approximations are even known (see [3] and the bibliography available
there).
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In [3] it was shown that for such classes Cψ
β̄,p

the following asymptotic equations take places

En(Cψ
β̄,p

)C ∼ En(Cψ
β̄,p

)C ∼
‖ cos t‖p′

π
ψ(n), 1 ≤ p ≤ ∞, 1

p
+

1

p′
= 1, (4)

where En(Cψ
β̄,p

) = sup
f∈Cψ

β̄,p

‖f − Sn−1(f)‖C , Sn−1(f) is the partial Fourier sum of order n−1 of the

function f , and A(n)∼B(n) as n→∞ means that lim
n→∞

A(n)/B(n)=1.

For p =∞ in the case of K = W r
β̄,∞, r > 0, and in the cases of K = Cα,r

β̄,∞, r ≥ 1, and K = Cψ
β̄,∞

(K = Cψβ,∞) for certain restrictions on sequences ψ and β̄ the exact values of the best uniform

approximations are known thanks to the works of Favard (1936, 1937), Akhiezer and Krein (1937),
Krein (1938), Nagy (1938), Stechkin (1956), Dziadyk (1959, 1974), Sun (1961), Bushanskij (1978),
Pinkus (1985), Serdyuk (1995, 1999, 2002) etc.

For p = 2 and for arbitrary β̄ = βk ∈ R,
∞∑
k=1

ψ2(k) < ∞ the exact values for the quantity

En(Cψ
β̄,2

)C are also known (see [2]).

Let K be a convex centrally symmetric subset of C and let bN (K,C), dN (K,C), λN (K,C), and
πN (K,C) be Bernstein, Kolmogorov, linear, and projection N -widths of the set K in the space C
[1].

The results containing order estimates of the widths bN , dN , λN or πN in the case of K = Cψ
β̄,p

(and, in particular, W r
β,p and C

ψ
β,p) can be found, for example, in the works of Tikhomirov (1976),

Pinkus (1985), Kornejchuk (1987), Kashin (1977), Kushpel' (1989), Temlyakov (1990, 1993) etc.

Theorem 1. Let {βk}∞k=1, βk ∈ R, and ψ(k) > 0 satis�es the condition
∞∑
k=1

ψ2(k) < ∞. Then for

all n ∈ N the following inequalities hold

1√
π

(
1

ψ2(n)
+ 2

n−1∑

k=1

1

ψ2(k)

)− 1
2

≤ P2n(Cψ
β̄,2
, C) ≤ P2n−1(Cψ

β̄,2
, C) ≤ 1√

π

( ∞∑

k=n

ψ2(k)

) 1
2

, (5)

where PN is any of the widths bN , dN , λN or πN .

If, in adition, ψ(k) satis�es the condition lim
n→∞

max



ψ(n)

(
n−1∑
k=1

1
ψ2(k)

) 1
2

, 1
ψ(n)

(
∞∑

k=n+1

ψ2(k)

) 1
2



=

0, then the following asymptotic equalities hold

P2n(Cψ
β̄,2
, C)

P2n−1(Cψ
β̄,2
, C)

}
= ψ(n)


 1√

π
+O(1) max



ψ(n)

(
n−1∑

k=1

1

ψ2(k)

) 1
2

,
1

ψ(n)

( ∞∑

k=n+1

ψ2(k)

) 1
2






 ,

(6)
where O(1) are the quantities uniformly bounded in all parameters.
The equalities (6) are realized by trigonometric Fourier sums Sn−1(f).
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The realized in [1] broadening to the noncompact but complete spaces of a�ne connection the well-
known Hopf-Bochner-Uano techniques ([3], for example) on the grounding the so called vanishing
theorems allowed to broad to the corresponding spaces some well-known theorems of the type of
geodesical unique de�nability ([2], for example). In particular, it is grounded that the next theorems
take place.

Theorem 1. Complete connected noncompact Riemannian Cr-space V n (n > 2, r > 4) with the
positive de�ned metric tensor and the Einstein tensor that doesn't equal to zero identically, that
satis�es the recurrence conditions

T
(αβ)
ijkl,mhg

mjghlEik.. = T
(αβ)
ijkl W

ijkl +
1

n
T

(γj)
ijkl R

(α|l|β)
γ . . E

ik
.. −

1

n
T

(αj)
ijkl R

βl
.. E

ik
.. −

− 1

n
T

(βj)
ijkl R

αl
.. E

ik
.. + T

(αβ)
ijkl,mW

ijklm,

where
Tαβijkl = n

(
δβj R

α
ikl − δβkRαlji

)
− gik

(
δβj R

α
.l −Rαjl β.

)
+ gjl

(
δβkR

α
.i −Rαki β.

)
,

”, ” means the corresponding covariant di�erentiation, doesn't admit non-trivial (di�erent from
the a�ne) geodesic mappings in the large.

Theorem 2. Complete connected noncompact Riemannian Cr-space V n (n > 2, r > 4) with the
positive de�ned metric tensor and the Einstein tensor that doesn't equal to zero identically, that
satis�es the recurrence conditions

P
(αβ)
ij,khg

hiEkj.. = P
(αβ)
ij,k W ijk + P

(αβ)
ij W ij ,

where
Pαβij = δβi R

α
.j − δβj Rα.i,

W ij and W ijk are some arbitrary tensors, correspondingly of the second and the third valence,
doesn't admit non-trivial (di�erent from the a�ne) geodesic mappings in the large.

Examples of the corresponding spaces are given.
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Some remarks on the Metrizability of F-metric spaces
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Abstract: In this talk, we will show that the newly introduced F-metric space, introduced by
Jleli and Samet in [1], is metrizable. Also, we deduce that the notions of convergence, Cauchy
sequence, completeness due to Jleli and Samet for F-metric spaces are equivalent to that of usual
metric spaces. Moreover, we show that the Banach contraction principle in the context of F-metric
spaces is a direct consequence of its standard metric counterpart.
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The use of the concept of Grassmann image of the surface extends the circle of the problems,
and it is the one of the methods of the study of the di�erential geometry of the surface. One
the problems is the problem connected with the proof of the existence of the surface with given
properties of its Grassmann image. In this paper, we consider the existence of the surface with
the �at normal connection and constant curvature of its Grassmann image in Minkowski space
1R4. The results of the solution of this problem depend on the type of Grassmann image. The
concept of the normal connection of the submanifold of Riemannian manifold has been introduced
by E. Cartan. The submanifolds with the �at normal connection have zero torsion. The important
property of the surfaces with the �at normal connection is the existence of the parameterization, in
which the �rst and two second quadratic forms can be reduced to the diagonal form simultaneously.
The surfaces with the �at normal connection and their images in Minkowski space also have the
additional properties.
If a time-like surface V 2 ⊂1 R4 has the �at normal connection and the non-degenerate Grassman

image, then that Grassman image is the time-like surface. In case of the space-like surface with a
�at normal connection, its Grassmann image can be either a space-like surface or a time-like one.
The following existence theorems have been proved in this paper.

Theorem 1. Let any k ∈ [0, 1] is given. Then in the space 1R4 there exists the time-like C3

class surface with the �at normal connection and the non-degenerate Grassmann image with the
constant curvature K̄ = k. In the case k = 0, there is a surface with a constant Gauss curvature
K = 0; if k ∈ (0, 1], then there exists the surface with the given function of the Gauss curvature
K = (α2

0 + 1)β(u1)δ(u2), where α0 = const, β(u1), δ(u2)) - the continuous functions.

Theorem 2. Let any k ∈ (−∞,−1] (k ∈ (0,+∞)) is given. Then in the space 1R4 there exists the
space-like C3 class surface with the �at normal connection and the non-degenerate space-like (time-
like) Grassman image with constant curvature K̄ = k. If k = 0, then there exists the surface with the
constant Gauss curvature K = 0; in the other cases there exists the surface with the given function
of Gauss curvature K(u1, u2) = (1− α2

0)β(u1)δ(u2), where α0 = const, α0 6= ±1, β(u1), δ(u2) - the
continuous functions.
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The relation between T0-topologies with the weight 2n−2 < k ≤ 2n−1
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It is common to speak that the topology on n-element set X has the weight k (or it belongs to
k-class), if the topology contains k elements. Let us designate the minimum neighborhood of the
element a ∈ X by Ma. The concept of the vector of the topology (the nondecreasing sequence of
the reduced by 1 powers of the minimum neighborhoods of all elements of X) have been introduced
in [3]. In the work [3] the theorem on three types of the vectors of T0-topologies with the weight
2n−1 < k ≤ 2n (close to the discrete topologies) has been proved:
1. (0, ..., 0, αn), 1 ≤ αn ≤ n− 1;
2. (0, ..., 0︸ ︷︷ ︸

k

, 1, ..., 1), 1 ≤ k ≤ n− 2, and
⋂n
m=k+1Mm = {y};

3. (0, ..., 0, 1, 1), Mn−1
⋂
Mn = �.

If T0-topology on n-element set induces close to the discrete T0-topology on some (n−1)-element
set, then such topologies are called consistent.
The fact that T0-topologies with the vectors (0, ..., 0, αn−1, αn), 1 ≤ αn−1 ≤ n−2, 2 ≤ αn ≤ n−1

(consistent with the close to discrete topologies of the �rst type) have weight 2n−2 < k ≤ 2n−1 has
been shown in [4]. The obtained results connected with the enumeration of T0-topologies and the
calculation of T0-topologies in the individual classes have been compared with the results [1], [2].
T0-topologies with the weight 2n−2 < k ≤ 2n−1, which are consistent with the close to discrete

topologies of the second and the third types have been considered in this paper. The fallowing facts
have been proved: these topologies do not form new classes, and such topologies are contained in
the same classes as T0-topologies with vectors (0, ..., 0, αn−1, αn).
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The Golomb and Kirch topologies on the set of nonzero integers
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The Golomb (resp. Kirch) topology on Z is generated by the subbase consisting of arithmetic
progressions a+ bZ where a ∈ Z and b is a (square-free) number, coprime with a. It is known that
the Golomb (Kirch) topology on the subspace Z• = Z \ {0} of non-zero integers is Hausdor� and
(locally) connected. In the talk we shall discuss the homeomorphisms of the Golomb and Kirch
topologies on Z• and N.

Theorem 1 (Banakh, Spirito, Turek). The space N with the Golomb topology has a unique self-
homeomorphism.

Theorem 2 (Banakh, Stelmakh, Turek). The space N with the Kirch topology has a unique self-
homeomorphism.

Theorem 3 (Spirito). The space Z• with the Golomb topology has exactly two self-homeomorphisms.

Theorem 4 (Stelmakh). The space Z• with the Kirch topology has exactly two self-homeomorphisms.
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On symmetrization of univalent polynomials
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The problem of T -symmetrization of a univalent in the unit disc D function f(z) is easy solvable

by transformation f (T )(z) =
[
f(zT )

]1/T
, T = 1, 2, ... It does not work for univalent in D polyno-

mials because the T -symmetrized function is not necessary a polynomial. We suggest a procedure
which allows us to symmetrize several univalent in D polynomials, including Alexander polynomi-
als, Brandt polynomials, de la Vall�ee Poussin polynomials, Fej�er polynomials, Su�ridge polynomials,
and some others.
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Projective invariants of linear planar 3-webs
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In this talk we present projective di�erential invariants of linear planar 3-webs. Linear 3-web on
the plane R2(x, y) is an unordered set of 3 linear foliations with the condition that leaves of any
pair of foliations are transversal to each other. Any such web is de�ned by the set of 3 solutions
w = w(x, y) to the Euler equation (see [1])

wy = wwx.

We will consider actions of the group of projective transformations SL3(R) of the plane. This
actions carries over to the space of solutions of the Euler equation. Representations of the Lie
algebra sl3(R) by vector �elds are

XA = (a13 + (a11 − a33)x+ a12y − a32xy − a33x
2)∂x+

+ (a23 + a21x+ (a22 − a33)y − a31xy − a32y
2)∂y,

where the matrix A = ‖aij‖i,j=1,2,3 ∈ sl3(R).

Proposition 1. The vector �elds

XA = XA + λA(w)∂w,

where

λA(w) = (a21 − a31y)w2 + (a11 − a22 − a31x+ a32y)w + a32x− a12,

de�ne representations of the Lie algebra sl3(R) on the total space of the bundle

π′ : R2 × R→ R2, π′(x, y, w) 7→ (x, y).

Moreover, the vector �elds XA are symmetries of the Euler equation.

Linear planar 3-webs are de�ned by a set of solutions w1, w2, w3 to the Euler equation.

Proposition 2. The vector �elds

XA = XA + λA(w1)∂w1 + λA(w2)∂w2 + λA(w3)∂w3

de�ne a representation of Lie algebra sl3(R) on the total space of the bundle

π : R2 × R3 → R2, π(x, y, w1, w2, w3) 7→ (x, y).

Moreover, the vector �elds XA are symmetries of the system of Euler equations

w1
y = ww1

x, w2
y = w2w2

x, w3
y = w3w3

x. (1)

System of equations (1) de�nes the submanifold

E1 ⊂ J1(π), E1 = {w1w1
x − w1

y = 0, w2w2
x − w2

y = 0, w3w3
x − w3

y = 0},
where J1(π) is the bundle of 1-jets of sections of this bundle. Let Ek ⊂ Jk(π) be a kth prolongation
of this manifold.
A rational function I on the manifold Ek is called a projective di�erential invariant of linear

3-webs of order ≤ k, if X
(k)
A (I) = 0 on Ek for all A ∈ sl3(R). Here X

(k)
A is the kth prolongation of

the vector �eld XA.

Solving the system of equations X
(2)
A (I) = 0, we get the following result.
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Theorem 3. The �eld of rational projective di�erential invariants of order ≤ 2 of linear 3-webs is
generated by invariants of order 2

I21 =
w2
xx

w3
xx

, I22 = −(−w2 + w3)w1
x + (w1 − w3)w2

x − w3
x(w1 − w2)√

w3
xx(w2 − w3)(w1 − w3)(w1 − w2)

, I23 =
w1
xx

w3
xx

.

This �eld separates regular SL3(R)-orbits in E2.

To describe the �eld of all projective di�erential invariants of linear 3-webs, we use the Lie-Tresse
theorem (see [2]).

Theorem 4. The �eld of rational projective di�erential invariants of linear 3-webs is generated by
the basis invariants I21, I22, I23 and the invariant derivations

∇1 = − (−w2 + w3)w1

w1w2
x − w1w3

x − w1
xw

2 + w1
xw

3 + w2w3
x − w2

xw
3

d

dx

+
−w2 + w3

w1w2
x − w1w3

x − w1
xw

2 + w1
xw

3 + w2w3
x − w2

xw
3

d

dy
,

∇2 = − (w3 − w1)w2

w1w2
x − w1w3

x − w1
xw

2 + w1
xw

3 + w2w3
x − w2

xw
3

d

dx

+
−w2 + w3

w1w2
x − w1w3

x − w1
xw

2 + w1
xw

3 + w2w3
x − w2

xw
3

d

dy
.

This �eld separates regular orbits.
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Recall that an ultrametric on a set X is a metric d that satis�es the strong triangle inequality
d(x, y) ≤ max{d(x, z), d(z, y)}, for all x, y, z ∈ X.
A triangular norm is a binary operation ∗ on the unit segment which is continuous, associative,

commutative, monotone, for which 1 is the unit.
In [1], the functor M∗ of ∗-measures acting on the category Comp of compact Hausdor� spaces

is de�ned for any triangular norm ∗. A ∗-measures on a compact Hausdor� space X is a functional
µ : C(X, [0, 1])→ [0, 1] satisfying: 1) µ(cX) = c, c ∈ [0, 1], 2) µ(ϕ∨ ψ) = µ(ϕ)∨ µ(ψ), 3) µ(c ∗ ϕ) =
c ∗ µ(ϕ).
The set M∗(X) of all ∗-measures on a compact Hausdor� space X is endowed with the weak∗

topology.
The space M∗(X) of ∗-measures of compact support can be also considered for any Tychonov

space X.
The aim of the talk is to consider the ultrametrization of the set M∗(X) for any ultrametric

space X. Given r > 0 we de�ne the set Fr(X) of functions from C(X, [0, 1]) constant on the balls
of radius r.
Similarly as in [2] we de�ne an ultrametric d̂ onM∗(X) by the formula d̂(µ, ν) = inf{r > 0|µ(ϕ) =

ν(ϕ) for all ϕ ∈ Fr(X)}.
We establish some topological and algebraic properties of the obtained ultrametric space (M∗(X), d̂).
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Sweep of surfaces in Galilean space
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Galilean space R1
3 is a three-dimensional a�ne space with a degenerate metric [1].

The basic geometric elements of a straight line, plane, and parallelism in Galilean space do not
di�er from these concepts of Euclidean space. Signi�cantly di�erent spatial motions of these spaces,
that is, the transformation of space that preserves the distance between points.
Under the sweep of surface we mean a uniquely mapping of pieces of the surface at which the

distance between the points and the angle between the lines are preserved. It is allowed to cut the
surface into pieces and indicate the gluing methods [2].
B.M. Sultanov studied the sweep of surfaces consisting only of parabolic points [3]. These are

cylinders and cones. It is shown that parabolic points of the surface are divided into two classes:
parabolic and special parabolic.
It is proved that they have a di�erent sweep on the plane. An example is given of cylinders equal

in Euclidean space, but in the Galilean space one of them is a parabolic surface, the other is special
parabolic. Moreover, they have di�erent sweeps on the plane.
In this article, a surface sweep is obtained that is uniquely projected onto a general position plane

in Galilean space.

De�nition 1. If between the points of the surface F ⊂ R1
3 and the points of the domain G in the

plane Oxy, there is an unambiguous mapping, the distance between the corresponding points have
the same order and equal, then the domain G - sweep is called a surface F in the plane Oxy.

In Euclidean space has a sweep only convex polyhedral cylindrical surface, cone. The degeneracy
of the Galilean space metric allows for the unfolding of surfaces of a wider class.

Theorem 2. The surface F ∈ R1
3 - width [a, b] and uniquely projected on the Oxy plane, has a

sweep G on the band a ≤ x ≤ b of the Oxy plane.

Let D be a domain on the plane in general position Oxy, and D = {(x, y) ∈ R1
2 : a ≤ x ≤

b;ϕ1(x) ≤ y ≤ ϕ2(x)}, where ϕ1(x), ϕ2(x) are continuous functions in [a, b].
Consider a surface F : z = f(x, y) (x, y) ∈ D with a boundary uniquely projecting onto the

boundary of the domain D.

Theorem 3. The surface F : z = f(x, y) is deployed to the area G = {(x, y) ∈ R1
2 : a ≤ x ≤ b; 0 ≤

y ≤
∫ ϕ2

ϕ1

√
1 + f2

y (x, y)dy} on the plane Oxy.

References

[1] Artykbaev A., Sokolov D.D. Geometry as a Whole in Flat Spacetime, - "Fan", Tashkent, 1991.
[2] Alexandrov A.D. Convex Polyhedra, Springer-Verlag Berlin Heidelberg, (2005).
[3] Artykbaev A., Sultanov B.M. Research of parabolic surface points in Galilean space. // Bulletin of National

University of Uzbekistan: Mathematics and Natural Sciences. Volume 2. Issue 4, pp. 231-245, 2019.

148



Maximal distance minimizers. Examples and properties

Yana Teplitskaya
(SPbSU, Department of Mathematics and Computer Science)

E-mail: janejashka@gmail.com

I will talk about the sets which have the minimal length over the class of closed connected sets
Σ ⊂ R2 satisfying the inequality maxy∈M dist (y,Σ) ≤ r for a given compact set M ⊂ R2 and some
given r > 0.
For a given compact set M ⊂ R2 consider the functional

FM (Σ) := sup
y∈M

dist (y,Σ),

where Σ is a closed subset of R2 and dist (y,Σ) stands for the Euclidean distance between y and Σ.
Consider the class of closed connected sets Σ ⊂ R2 satisfying FM (Σ) ≤ r for some r > 0. We are
interested in the sets of the minimal length (one-dimensional Hausdor� measure) H1(Σ) over the
mentioned class (minimizers).
It is known that for all r > 0 the set of minimizers is nonempty. It is proven also that for each

minimizer of positive length the equality FM (Σ) = r holds. Furthermore the set of minimizers
coincides with the set of solutions of the dual problem: minimize FM over all closed connected sets
Σ ⊂ R2 with prescribed bound on the total length H1(Σ) ≤ l.
In [1] (for the plane) and in [2] (for the general case) some properties of minimizers have been

proven:

(a) A minimizer cannot contain loops (homeomorphic images of circles).
(b) For every point x ∈ Σ one of two statements is true:

i there exists a point y ∈M (may be not unique) such that dist (x, y) = r and Br(y)∩Σ =
∅;

ii there exists an ε > 0 such that SΣ ∩Bε(x) is either a segment or a regular tripod, i.e.
the union of three segments with an endpoint in x and relative angles of 2π/3.

The minimizers for some sets M are known (see pictures) although usually this is not an easy task.
Recently (see [3]) at the plane the regularity of minimizers was proved.

Theorem 1. Let Σ be a maximal distance minimizer for a compact set M ⊂ R2. Then

(i) Σ is a union of a �nite number of arcs (injective images of the segment [0; 1]).
(ii) The angle between each pair of tangent rays at every point of Σ is greater or equal to 2π/3.

The number of tangent rays at every point of Σ is not greater than 3. If it is equal to 3, then
there exists such a neighbourhood of x that the arcs in it coincide with line segments.
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Figure 1.1. An example where M = ∂BR(O), where R > 4.98r.
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Figure 1.2. An example where M := ∂Br([AG]), Σ = [AG].
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Figure 1.3. An example where M := {A,B,C}, Σ is a tripod.
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Many scientists worked on �nding new weaker conditions for holomorphicity of complex-valued
functions: H. Bohr, H. Rademacher, D. Menchov [1], V. Fedorov, G. Tolstov, Y. Trokhimchuk [2, 3],
G. Sindalovski, D.Teliakovski, E. Dolzhenko, M. Brodovich and their multidimencional generaliza-
tions: A. Bondar, V. Siryk, O. Gretskii.
Here is one of Menchov conditions: function F (ξ) satis�es K ′′′ condition in point ξ0 if exists limit

lim
ξ→ξ0

F (ξ)− F (ξ0)

ξ − ξ0
, (1)

where ξ belongs to union of two noncollinear rays with common starting point ξ0.
D. Menchov [1] has prowed that ful�llment of the condition K ′′′ in any point of domain D

(excluding not more than countable set) is su�cient for conformity of mapping F in case if F :
D → C is continuous univalent function. Y. Trokhimchuk [2] has removed univalency condition in
following theorem.

Menchov-Trokhimchuk Theorem. If function F : D → C is continuous in domain D and in
every its point, excluding not more than countable set, condition K ′′′ is ful�lled, then function F is
holomorphic in domain D.

Analog of Menchov-Trokhimchuk Theorem for monogenic functions in space E3.
Let A3 be 3-dimencional commutative associative algebra with unit 1 over the �eld C with basis

{1, ρ, ρ2}, such that ρ3 = 0.
Let �x the real 3-dimencional subspace E3 := {ζ = xe1 + ye2 + ze3 : x, y, z ∈ R} ⊂ A3, where

the vectors e1, e2, e3 � are linearly independent over the real �eld R, but, in general, not a basis
of the algebra A3 . Only one condition should be ful�lled: image of the E3 under the mapping f is
whole complex plane (see [5, 6]).
Function Φ′G : Ω −→ A3 is called G�ateaux derivative of function Φ: Ω −→ A3, with domain

Ω ⊂ E3 , if in any point ζ ∈ Ω exists element Φ′G(ζ) ∈ A3 such that

lim
δ→0+0

(Φ(ζ + δh)− Φ(ζ)) δ−1 = hΦ′G(ζ) ∀h ∈ E3 . (2)

Function Φ: Ω −→ A3 is called monogenic in domain Ω ⊂ E3 , if Φ is continuous and has G�ateaux
derivative in any point of Ω (see [8, 11]).
Intersection of radical of algebra A3 with linear space E3 is the set of non-invertible elements

which belongs to E3. This set is the straight line L := {c l : c ∈ R}, with direction vector l ∈ E3.
Preimage of any point ξ ∈ C in E3 under the mapping f is the straight line Lζ := {ζ + c l : c ∈ R},
where ζ � element from E3 such that ξ = f(ζ). Obviously, line Lζ is parallel to line L.
Let domain Ω ⊂ E3 is convex in direction of straight line L (domain is called convex in direction

of straight line, if it contains every segment joining two points of domain and parallel to this straight
line).
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Consider next hypercomplex analog of Menshov condition K ′′′ in algebra A3 for functions Φ :
Ω→ A3, de�ned in domain Ω ⊂ E3.

De�nition 1. Let say, that function Φ : Ω → A3 is ful�lled condition K ′′′A3,E3
at point ζ ∈ Ω, if

exists element Φ∗(ζ) ∈ A3 such that equation

lim
δ→0+0

(Φ(ζ + δh)− Φ(ζ)) δ−1 = hΦ∗(ζ) (3)

is ful�lled for three vectors h: h1, h2 and h3 = l or h3 = −l, which are the basis of space E3.

Theorem 2. Let the domain Ω ⊂ E3 is convex in direction of straight line L, function Φ : Ω→ A3

is continuous in Ω and ful�ll conditionK ′′′A3,E3
in all points ζ ∈ Ω , except not more than countable

set. Then:
1) function Φ is monogenic in domain Ω;
2) function Φ extends to function monogenic in domain Π. This extension is unique and given

by equality

Φ(ζ) =
1

2πi

∫

γ

(
F0(ξ) + F1(ξ)ρ+ F2(ξ) ρ2

)
(ξ − ζ)−1 dξ , (4)

for all ζ ∈ Π;
3) monogenic extension (4) of function Φ is di�erentiable in the sense of Lorch [10] in Π.
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Onto the some dynamic applications via quaternions
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Quaternion algebra, which generate the complex numbers in four dimensions, is one of the sig-
ni�cant tools for not only mathematics but also physical applications [1, 2]. Quaternionic represen-
tations can be used some sub�elds of physics such as classical mechanics [3, 4], quantum mechanics
[5], electromagnetism [6], linear gravity [7, 8], plasma [9] and �uid systems [10] etc. In this work,
the quaternions with real coe�cients and their some properties have been de�ned. By this way,
the quaternionic descriptions of the rotation, translation and both two motions of the rigid body
have been written in a detail manner and the applicable examples have been given. Then, the force
and torque terms on the object have been presented and exempli�ed by using quaternion concept.
Moreover, the manual operations have also been veri�ed with the help of computer programs such
as Mathematica and Matlab [11, 12]. As a consequence, it is said that the quaternion algebra is the
important and practical mathematical structures for applicable sciences.
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On dynamical systems with a prescribed globally bp-attracting set
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Given an arbitrary �xed nonempty closed subset C ⊂ Rn, we propose an explicit method to
construct a dynamical system which admits the regular part of C as globally bp-attracting set, i.e.
a closed and invariant set which attracts every bounded positive orbit of the dynamical system. We
apply this result in order to provide an explicit method of leafwise asymptotic bp-stabilization of
the regular part of an a-priori given invariant set of a conservative system. The theoretical results
are illustrated for the completely integrable case of the R�ossler dynamical system.
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On certain fractal-based estimations of subsidence volume
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In [1, 2], the particle size distribution Ns(L > ds) was de�ned as the number of particles being
of any size L larger than ds, where ds runs over the real numbers. In the same way we can
introduce the particle size distribution by volume Vs(L > ds) (and by mass Ms(L > ds)) as the
volume (mass) of particles being of any size L larger than ds, where ds runs over the real numbers.
Certainly, Ns(L > ds), Vs(L > ds) andMs(L > ds) are real functions. The particle size distribution
Ns(L > ds) has fractal dimension Ds if

Ns(L > ds) = γds
−Ds ,

where γ is a constant coe�cient.
Under some additional conditions of fractal nature of the loess soil and developing methods

introduced in [3, 4, 5] we obtained certain predictive estimations of the coe�cient of porosity after
the disintegration of micro-aggregates. In this note we obtain some estimations of soil subsidence
volume, based on the introduced above fractal dimension.
The particles forming the ground may have only a �nite set of sizes. We denote these sizes

d1, d2, ..., dn−1, dn ranging in decreasing order from the largest. We assume that α = αj = dj/dj−1,
where 2 6 j 6 n , does not depend on j. This assumption corresponds to the idea of the self-
similarity of fractal structures. In addition, all known mathematical fractals are constructed on
this principle. As the structures formed by particles of a �xed size are self-similar, we also assume
that all these structures have the same coe�cient of porosity kp as well as the same porosity
Kp = kp/(1 + kp). We discovered that under such conditions two di�erent situations may occurred.
Let k′ be the coe�cient of porosity and K ′ be the porosity of the soil after the disintegration of
micro-aggregates.

Theorem 1. In the above denotations we have :
1. if Kp ≥ α3−Ds then k′ = (1+kp)(α3−Ds−1)

(α3−Ds )n−1
− 1 and K ′ = 1− (α3−Ds )

n−1
(1+kp)(α3−Ds−1)

;

2. if Kp < α3−Ds then k′ = kp(1−α3−Ds )
1−(α3−Ds )n

(5.18) and K ′ = kp(1−α3−Ds )
kp(1−α3−Ds )+1−(α3−Ds )n

.

The details of our experiments and techniques are described in [4].
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Modular knots obey the Chebotarev law
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A Chebotarev link in S3 is an analogue of the set of all prime numbers in Z. It would play an
important roll in arithmetic topology, especially when we formulate an analogue of the idelic class
�eld theory for 3-manifolds [Uek21a] (see also [Mor12, Nii14, NU19, Mih19]). Here is the de�nition:

De�nition 1 (The Chebotarev law). Let (Ki)i = (Ki)i∈N>0 be a sequence of disjoint knots in a
3-manifold M . For each n ∈ N>0 and j > n, put Ln = ∪i≤nKi and let [Kj ] denote the conjugacy
class of Kj in π1(M − Ln). We say that (Ki)i obeys the Chebotarev law if the density equality

lim
ν→∞

#{n < j ≤ ν | ρ([Kj ]) = C}
ν

=
#C

#G

holds for any n ∈ N>0, any surjective homomorphism ρ : π1(M −Ln)→ G to any �nite group, and
any conjugacy class C ⊂ G.
In order to answer Mazur's question on the existence of such a link in S3 [Maz12], by using

Parry�Pollicott's zeta functions of symbolic dynamics [PP90], McMullen proved a highly interesting
theorem:

Proposition 2 ([McM13, Theorem 1.2]). Let (Ki)i be the closed orbits of any topologically mixing
pseudo-Anosov �ow on a closed 3-manifold M , ordered by length in a generic metric. Then (Ki)i
obeys the Chebotarev law.

Applying his theorem to the monodromy suspension �ow of the �gure-eight knot K and noting
that the Chebotarev law persists under Dehn surgeries, he constructed a Chebotarev link containing
K in S3 [McM13, Corollary 1.3]. We re�ne his construction in two ways to verify the following
assertion:

Theorem 3 ([Uek21b, Theorem 3]). Let L be a �bered hyperbolic link in S3 and let (Ki)i denote
the sequence of knots consisting of the closed orbits of the suspension �ow of the monodromy map
and L itself. Then (Ki)i obeys the Chebotarev law, if ordered by length with respect to a generic
metric.
The union L = ∪iKi is a stably Chebotarev link, that is, for any �nite branched cover h : M → S3

branched along any �nite link in L, the inverse image h−1(L) is again Chebotarev.

One way is to extend McMullen's theorem for generalized pseudo-Anosov �ows, which allow 1-
pronged singular orbits. The other is to invoke the notion of rational Fried surgeries, which produce
many (generalized) pseudo-Anosov �ows.

Our re�nement further provides a new example called modular knots, that are also known as
Lorenz knots. Let H2 = {z ∈ C | Imz > 0} denote the upper half plane. The unit tangent bundle
of the modular orbifold PSL2Z \H2 is well-known to be homeomorphic to both the quotient space
PSL2Z \ PSL2R ∼= SL2Z \ SL2R and the exterior of a trefoil K in S3. A �ow on PSL2Z \ PSL2R
historically called the geodesic �ow is de�ned by multiplying

(
et 0
0 e−t

)
on the right, and its closed

orbits are called modular knots. For each primitive hyperbolic element γ in SL2Z, we may de�ne
the corresponding modular knot Cγ by Cγ(t) = Mγ

(
et 0
0 e−t

)
(0 ≤ 0 ≤ log ξγ), where M−1

γ γMγ =
( ξγ 0

0 ξ−1
γ

)
with ξγ > 1. Every modular knot admits such a presentation. By virtue of Bonatti�

Pinsky's nice compacti�cation [BP20], we obtain the following:
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Theorem 4 ([Uek21b, Theorem 4]). Modular knots and the missing trefoil in S3 obey the Chebotarev
law, if ordered by length in a generic metric.

As a corollary, we obtain a result on a function with arithmetic origin. The discriminant function

∆(z) = q

∞∏

n=1

(1 − qn)24 with q = e2π
√−1z, z ∈ H2 is a well-known modular function of weight 12.

The Dedekind symbol Φ and the Rademacher symbol Ψ are the functions SL2Z→ Z satisfying

log ∆(γz)− log ∆(z) =

{
6 log(−(cz + d)2) + 2πiΦ(γ) if c 6= 0,
2πiΦ(γ) if c = 0,

Ψ(γ) = Φ(γ)− 3sgn(c(a+ d))

for any γ =
(
a b
c d

)
∈ SL2Z acting on z ∈ C via the M�obius transformation γz = az+b

cz+d . Here we take
a branch of the logarithm so that −π ≤ Im log z < π holds. This Ψ factors through the conjugacy
classes of PSL2Z and satis�es Ψ(γ−1) = −Ψ(γ) for any γ.
The Rademacher symbol Ψ is known to be a highly ubiquitous function. Indeed, Atiyah proved

the equivalence of seven de�nitions rising from very distinct contexts [Ati87], whereas Ghys gave
further characterizations ([BG92], [Ghy07, Sections 3.3�3.5], [DIT17, Appendix]), proving that for
each primitive hyperbolic γ ∈ SL2Z, the linking number between the modular knot Cγ and the missing
trefoil K coincides with the Rademacher symbol, namely,

lk(Cγ ,K) = Ψ(γ)

holds. Theorem 4 for ρ(γ) = lk(Cγ ,K) mod m together with some arguments yield the following.

Corollary 5 ([Uek21b, Corollary 9]). Suppose that γ runs through primitive hyperbolic elements of
SL2Z. For any m ∈ Z>0 and k ∈ Z/mZ, we have

lim
ν→∞

#{γ | |trγ| < ν, Ψ(γ) = k in Z/mZ}
#{γ | |trγ| < ν} =

1

m
.

The similar arguments may be applicable to other Fuchsian groups. Modular knots for triangle
groups around any torus knot in S3 will be �nely studied in [MU21].
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The Collatz conjecture is an open problem in number theory stablished in 1937 by Lothar Collatz
and can be stated as follows: If f : N→ N is the function de�ne by:

f(n) =

{
n
2 ;n is even

3n+ 1 ;n is odd

the conjecture says that given n ∈ N, there exists k > 0 such that f (k)(n) = 1 and the only orbit
is {1, 2, 4}
In 2019, Terence Tao showed, in the context of the Collatz conjecture, that almost all n ∈ N

belong to the set W = {n ∈ N : min(O(n)) < f(n)}. In this paper we prove that the Collatz
conjecture is true if and only if the set W is connected in N with the primal topology τf , where τf
is the topology on N given by the open sets as those subset θ of N such that f−1(θ) ⊂ θ.
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Let Hp(C+), 1 ≤ p < +∞, [1] be the Hardy space of analytic in the half-plane C+ = {z : <z > 0}
functions, for which

‖ f ‖= sup
x>0





+∞∫

−∞

|f(x+ iy)|pdy





1/p

< +∞.

Let Dσ = {z : <z < 0, |=z| < σ}, D∗σ = C \Dσ, σ > 0.

De�nition 1. Let Ep(Dσ) and Ep(D∗σ), 1 ≤ p < +∞, σ > 0, be the spaces of analytic functions in
the domains Dσ and D∗σ respectively, for which

sup





∫

γ

|f(z)|p|dz|





1/p

< +∞,

where supremum is taken over all segments γ, that are contained in Dσ and D∗σ respectively.

We consider the properties of functions in the half-strip Dσ and in the exterior of half-strip D∗σ.
In [2] considered spaces Ep(Dσ) and Ep(D∗σ) as spaces of signals. We propose a common point of
viev on Ep(Dσ) and Ep(D∗σ).

Theorem 2. Function f belongs to E2(D∗σ) if and only if, when the function

F (w) = f

(
−w +

2σi

π
cos

wπi

2σ

)√
−1 + sin

wπi

2σ
,

where
√

1 = 1, belongs to E2(Dσ).

The proof of the theorem is based on the following lemma.

Lemma 3. Function

w̃ = −w +
2σi

π
cos

wπi

2σ
comformally maps Dσ into D∗σ.
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A map is called inner mapping if it is open and isolated (the preimage of a point consists of
isolated points). Yuriy Trokhimchuk studied inner mappings a lot during his life and published a
book [5]. Topological properties of dynamical systems generated by inner mappings were studied in
[3].
the open question of topological dynamics of inner mappings of surfaces is whether there exists

a class of structurally stable inner mappings. Conjugacy with a homeomorphism as a topological
equivalence of inner mappings seems too strict to produce a structurally stable map. It is proven
in [1, 2] for Anosov endomorphisms. A paper [4] produced some examples even for the wandering
set. It seems that indeed there is no structurally stable inner mapping up to topological conjugacy.
In that case it seems reasonable to �nd another de�nition of the topological equivalence such that

it allows structural stability. Possible candidates are discussed.
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Extremal problem for non-overlapping domains with free poles
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Let N and R be the sets of natural and real numbers, respectively, C be the complex plane,
C = C

⋃{∞} be the Riemann sphere, and r(B, a) be the inner radius of the domain B ∈ C with
respect to the point a ∈ B.
Consider the following problem which was formulated in 1994 [1].

Problem 1. Consider the product

In(γ) = rγ (B0, 0)

n∏

k=1

r (Bk, ak) ,

where B0, B1,...,Bn (n ≥ 2) are pairwise non-overlapping domains in C and a0 = 0 and |ak| = 1 for
k = 1, n, and 0 < γ 6 n. Show that it attains its maximum at a con�guration of domains Bk and
points ak possessing rotational n-symmetry.

This problem has a solution only if γ 6 n as soon as γ = n+ε, ε > 0, the problem has no solution.
Currently it still unsolved in general, only partial results are known [2].
The following theorem holds [3].

Theorem 2. Let n ∈ N and n > 2. Then for any β ∈ (0; 1
2 ] there exists n0(β) such that for all

n > n0(β) and for all γ ∈ (1, nβ] and for any di�erent points of a unit circle and for any di�erent
system of non-overlapping domains Bk, such that ak ∈ Bk ⊂ C for k = 1, n, and a0 = 0 ∈ B0 ⊂ C,
the following inequality holds

rγ (B0, 0)
n∏

k=1

r (Bk, ak) 6
(

4

n

)n
(

4γ
n2

) γ
n

(
1− γ

n2

)n+ γ
n

(
1−

√
γ
n

1 +
√
γ
n

)2
√
γ

. (1)

Equality is attained if ak and Bk for k = 0, n, are, respectively, poles and circular domains of the
quadratic di�erential

Q(w)dw2 = −(n2 − γ)wn + γ

w2(wn − 1)2
dw2.
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Inner harmonic measure for the fractional Laplacian
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The talk is based on [9], and it deals with the theory of potentials with respect to the α-Riesz
kernel |x− y|α−n of order α ∈ (0, 2] on Rn, n > 3. We �rst focus on the inner α-harmonic measure
εAy for A ⊂ Rn arbitrary, being motivated by the known fact that it is the main tool in solving
the generalized Dirichlet problem for α-harmonic functions (see [1, 7]). Here εy is the unit Dirac
measure at y ∈ Rn, and µA the inner α-Riesz balayage of a Radon measure µ to A ⊂ Rn (see [8],
cf. also [4] where α = 2).
We describe the Euclidean support of the inner α-harmonic measure εAy , provide a formula for

evaluation of its total mass εAy (Rn), establish the vague continuity of the map y 7→ εAy outside the

inner α-irregular points for A, and obtain necessary and su�cient conditions for εAy to be of �nite

energy (more generally, for εAy to be absolutely continuous with respect to inner capacity) as well

as for εAy (Rn) ≡ 1 to hold. Those criteria are given in terms of newly de�ned concepts of inner
α-thinness and inner α-ultrathinness of A at in�nity (see [9]) that for α = 2 and A Borel coincide
with the concepts of outer 2-thinness at in�nity by Doob [5] and Brelot [2], respectively.
Further, we extend some of these results to µA general by verifying the integral representation

formula for inner balayage:

µA =

∫
εAy dµ(y).

We also show that for every A ⊂ Rn, there exists a Kσ-set A0 ⊂ A such that

µA = µA0 for all µ,

and give various applications of this theorem. In particular, we prove the vague and strong continuity
of the inner swept, resp. inner equilibrium, measure under an approximation of A arbitrary, thereby
strengthening Fuglede's result [6], established for A Borel.
Being mainly new even for α = 2, the results obtained also present a further development of the

theory of inner Newtonian capacities and of inner Newtonian balayage, originated by Cartan [3, 4].
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Ìóëüòèïëiêàòîðè â ïðîñòîðàõ Õàðäi òà ïîâ'ÿçàíèõ ç íèìè
ïðîñòîðàõ
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Ìèêîëà Ãà¹âñüêèé
(Öåíòðàëüíîóêðà¨íñüêèé äåðæàâíèé ïåäàãîãi÷íèé óíiâåðñèòåò iìåíi Âîëîäèìèðà

Âèííè÷åíêà, âóë. Øåâ÷åíêà,1, Êðîïèâíèöüêèé)
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Íåõàé m � äåÿêå íàòóðàëüíå ÷èñëî, Cm � ìíîæèíà âïîðÿäêîâàíèõ íàáîðiâ êîìïëåêñíèõ
÷èñåë z = (z1, . . . , zm). ×åðåç Dm = {z ∈ Cm : |zj | < 1, 1 ≤ j ≤ m} ïîçíà÷èìî îäèíè÷íèé
ïîëiêðóã ç êiñòÿêîì Tm = {z ∈ Cm : |zj | = 1, 1 ≤ j ≤ m}. ×åðåç H1(Dm) ïîçíà÷èìî ìíîæèíó
àíàëiòè÷íèõ â ïîëiêðóçi Dm ôóíêöié f, äëÿ ÿêèõ âèêîíó¹òüñÿ óìîâà

‖f‖H1(Dm) = sup
0<rj<1,1≤j≤m

∫ 2π

0
dt1 . . .

∫ 2π

0
|f(r1e

it1 , . . . , rme
itm)|dtm <∞.

Âiäìiòèìî, ùî ïðè m = 1 îòðèìà¹ìî çâè÷àéíi îäíîâèìiðíi êëàñè Õàðäi H1(D) i â öüîìó
âèïàäêó âåðõíié iíäåêñ áóäåìî îïóñêàòè.
Çà äîïîìîãîþ ïîñëiäîâíîñòi êîìïëåêñíèõ ÷èñåë Λ = {λk}, k ∈ Z+ êîæíié f ∈ H1(Dm) ç

ðÿäîì Òåéëîðà f(z) =
∑∞

ν=1 Fν(z), Fν(z) =
∑

k1+...+km=ν

ckz
k ïîñòàâèìî ó âiäïîâiäíiñòü ôóíêöiþ

Λf(z) =
∑∞

ν=1 λνFν(z) òà îçíà÷èòèìî íàñòóïíèì ÷èíîì ìóëüòèïëiêàòîð. Ïîñëiäîâíiñòü êîìïëå-
êñíèõ ÷èñåë Λ íàçèâà¹òüñÿ ìóëüòèïëiêàòîðîì, ùî äi¹ ç H1(Dm) â H1(Dm), ÿêùî ‖Λf‖H1(Dm) ≤
M‖f‖H1(Dm).
Ç êëàñè÷íèìè êëàñàìè Õàðäi òiñíî ïîâ'ÿçàíi äiéñíi êëàñè Õàðäi. Ïiä äiéñíèì êëàñîì Õàðäi

ReH1 ðîçóìiþòü ïðîñòið ôóíêöié F : R → R, ùî ¹ äiéñíèìè ÷àñòèíàìè ãðàíè÷íèõ çíà÷åíü
ôóíêöié f ∈ H1(D) F (t) = lim

r→1
Ref(reit).

Äiéñíèé êëàñ Õàðäi ¹ áàíàõîâèì ïðîñòîðîì ç íîðìîþ ‖F‖ReH1 = ‖F‖L1 + ‖F‖L1 , äå F �

ôóíêöiÿ ñïðÿæåíà äî F, L1 � ïðîñòið ñóìîâíèõ ôóíêöié ç íîðìîþ ‖F‖L1 =
2π∫
0

|F (x)|dx.
Àíàëîãi÷íî, ïîñëiäîâíiñòü Λ = {λk}, k ∈ Z+ íàçèâà¹òüñÿ ìóëüòèïëiêàòîðîì ç ReH1 â ReH1,

ÿêùî äëÿ F ∈ ReH1 ç ðÿäîì Ôóð'¹ F (x) ∼ a0
2 +

∑∞
k=1 ak cos kt + bk sin kt ðÿä ΛF (x) ∼ λ0a0

2 +∑∞
k=1 λk(ak cos kt + bk sin kt) ¹ ðÿäîì Ôóð'¹ äåÿêî¨ ôóíêöi¨ ΛF ∈ ReH1, òîáòî ‖ΛF‖ReH1 ≤

M‖F‖ReH1 .

Òåîðåìà 1. Äëÿ òîãî ùîá ïîñëiäîâíiñòü êîìïëåêñíèõ ÷èñåë Λ = {λk} áóëà ìóëüòèïëiêà-
òîðîì ç ïðîñòîðó H1(D) â H1(D), íåîáõiäíî i äîñòàòíüî, ùîá iñíóâàëà òàêà ïîñëiäîâíiñòü

µk ∈ C òàêà, ùî sup
n

∫ 2π
0

∣∣∣
∑n

k=0 λke
−ikt +

∑n
k=1 µke

ikt
∣∣∣dt <∞

Òåîðåìà 2. Äëÿ òîãî ùîá ïîñëiäîâíiñòü êîìïëåêñíèõ ÷èñåë Λ = {λk} áóëà ìóëüòèïëiêàòî-
ðîì ç ïðîñòîðó H1(Dm) â H1(Dm), íåîáõiäíî i äîñòàòíüî, ùîá iñíóâàëà òàêà ïîñëiäîâíiñòü

µk ∈ C, ùî sup
n

∫ 2π
0

∣∣∣
∑n

k=0 λke
−ikt +

∑n
k=1 µke

ikt
∣∣∣dt <∞.
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Òåîðåìà 3. Äëÿ òîãî ùîá ïîñëiäîâíiñòü äiéñíèõ ÷èñåë Λ = {λk} áóëà ìóëüòèïëiêàòîðîì
ç ïðîñòîðó ReH1 â ReH1, íåîáõiäíî i äîñòàòíüî, ùîá iñíóâàâ òàêèé ðîçêëàä λk = αk + βk,

αk, βk ∈ R, ùî sup
n

∫ 2π
0

∣∣∣
∑n

k=0 αk cos kx+ βk sin kx
∣∣∣dx <∞
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Ïðî äåÿêi çàêîíîìiðíîñòi êâàçi-ãåîäåçè÷íèõ âiäîáðàæåíü
óçàãàëüíåíî-ðåêóðåíòíèõ ïðîñòîðiâ

Ïiñòðóië Ì.I.
(ÎÍÓ, Îäåñà, Óêðà¨íà)

E-mail: margaret.pistruil@gmail.com

Êóðáàòîâà I.Ì.
(ÎÍÓ, Îäåñà, Óêðà¨íà)

E-mail: irina.kurbatova27@gmail.com

Íåõàé óçàãàëüíåíî-ðåêóðåíòíèé ïðîñòið ïàðàáîëi÷íîãî òèïó [3] (Vn, gij , F
h
i ) äîïóñêà¹ íåòðè-

âiàëüíå êâàçi-ãåîäåçè÷íå âiäîáðàæåííÿ [1] íà ïñåâäîðiìàíîâèé ïðîñòið (V n, gij). Òîäi â ñóìiñíié

çà âiäîáðàæåííÿì ñèñòåìi êîîðäèíàò (xi) âèêîíóþòüñÿ îñíîâíi ðiâíÿííÿ [3]

Γ
h
ij(x) = Γhij(x) + ψ(i(x)δhj) + φ(i(x)F hj)(x),

Fij = −Fji, Fij = giαF
α
j , F ij = −F ji, F ij = giαF

α
j ,

F hαF
α
i = 0

F h(i,j) = F h(iqj).

Òóò ”,” - çíàê êîâàðiàíòíî¨ ïîõiäíî¨ âiäíîñíî çâ'ÿçíîñòi Γ â Vn.
Ðîçãëÿíóòî âèïàäîê, êîëè óçàãàëüíåíî-ðåêóðåíòíèé ïðîñòið ïàðàáîëi÷íîãî òèïó ç iíòåãðîâ-

íîþ àôiíîðíîþ ñòðóêòóðîþ (Vn, gij , F
h
i ) äîïóñêà¹ êâàçi-ãåîäåçè÷íå âiäîáðàæåííÿ çi çáåðåæåí-

íÿì âåêòîðà óçàãàëüíåíî¨ ðåêóðåíòíîñòi [3], îòæå â ïðîñòîði (V n, gij) äëÿ àôiíîðà F
h
i âèêîíó-

þòüñÿ ñïiââiäíîøåííÿ

F h(i|j) = F h(iqj),

äå ”|” - çíàê êîâàðiàíòíî¨ ïîõiäíî¨ âiäíîñíî çâ'ÿçíîñòi Γ â Vn.
Çàóâàæèìî, ùî îáðàç óçàãàëüíåíî-ðåêóðåíòíîãî ïðîñòîðó ïðè êâàçi-ãåîäåçè÷íîìó âiäîáðà-

æåííi íåîáõiäíî áóäå òàêîæ óçàãàëüíåíî-ðåêóðåíòíèì ïðîñòîðîì [3], àëå çáåðåæåííÿ âåêòîðà
óçàãàëüíåíî¨ ðåêóðåíòíîñòi ïðè öüîìó íå ¹ íåîáõiäíèì.
Çà òàêèõ óìîâ îòðèìàíî íîâó ôîðìó îñíîâíèõ ðiâíÿíü [2] êâàçi-ãåîäåçè÷íèõ âiäîáðàæåíü

óçàãàëüíåíî-ðåêóðåíòíèõ ïðîñòîðiâ ïàðàáîëi÷íîãî òèïó, ÿêà äîïóñêà¹ åôåêòèâíå äîñëiäæåííÿ.
Ïîáóäîâàíî ïåðåòâîðåííÿ, ÿêå äà¹ çìîãó iç ïàðè óçàãàëüíåíî-ðåêóðåíòíèõ ïðîñòîðiâ, ùî

çíàõîäÿòüñÿ â êâàçi-ãåîäåçè÷íîìó âiäîáðàæåííi çi çáåðåæåííÿì âåêòîðà óçàãàëüíåíî¨ ðåêó-
ðåíòíîñòi, îòðèìàòè íîâó ïàðó óçàãàëüíåíî-ðåêóðåíòíèõ ïðîñòîðiâ, ùî òàêîæ çíàõîäÿòüñÿ â
êâàçi-ãåîäåçè÷íîìó âiäîáðàæåííi.
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Ðàññìîòðèì ðèìàíîâî ïðîñòðàíñòâî Vn, îòíåñåííîå ê ïðîèçâîëüíîé ñèñòåìå êîîðäèíàò xh.
Â îêðåñòíîñòè ïðîèçâîëüíîé ôèêñèðîâàííîé òî÷êè M0(xh0) ñòðîèì ïðîñòðàíñòâî Ṽ 2

n , êîòîðîå
ðåàëèçóåò ïðèáëèæåíèå âòîðîãî ïîðÿäêà äëÿ Vn, ñ ìåòðè÷åñêèì òåíçîðîì g̃ij(y) [1]:

g̃ij(y) = g
o
ij +

1

3
R
o
iαβjy

αyβ, (1)

ãäå
g
o
ij = gij(M0), R

o
iαβj = Riαβj(M0).

Äëÿ èññëåäîâàíèÿ ãåîäåçè÷åñêèõ îòîáðàæåíèé ïðîñòðàíñòâà Ṽ 2
n îñíîâíûå óðàâíåíèÿ

Í.Ñ. Ñèíþêîâà [2]

∇̃kãij = λ̃(ig̃j)k

n∇̃kλ̃i = µ̃g̃ik + ãαiR̃
α
k − ãαβR̃αβ.ik. (2)

(n− 1)∇̃kµ̃ = 2(n+ 1)λ̃αR̃
α
k + ãβα(2∇̃βR̃αk − ∇̃kR̃αβ)

ïðåäñòàâëåíû â ýêâèâàëåíòíîì âèäå

g̃iα
∂ãαj
∂yk

+ ãαj Γ̃αk,i − ãαi Γ̃jk,α = λ̃(ig̃j)k

n

(
∂λ̃α

∂yi
g̃αi + λ̃αΓ̃αj,i

)
= µ̃g̃ij + ãαi R̃αj − ãαβR̃β.ijα (3)

(n− 1)∇̃kµ̃ = 2(n+ 1)λ̃αR̃αk + ãβα(2∇̃βR̃αk − ∇̃kR̃αβ)

Èññëåäóÿ óðàâíåíèÿ (3), êîìïîíåíò òåíçîðà ãij(y) = g̃iαã
α
j , âåêòîðà λ̃i = λ̃αg̃αi è ôóíê-

öèè µ̃(y) ïîëó÷åíû â âèäå ñòåïåííûõ ðÿäîâ, êîýôôèöèåíòû êîòîðûõ îïðåäåëåíû çíà÷åíèÿìè
îáúåêòîâ ïðîñòðàíñòâà Vn â òî÷êå M0. Èçó÷àåòñÿ âîïðîñ ñõîäèìîñòè ïîëó÷åííûõ ðÿäîâ.
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