Found a mistake in the text on the site? Help us fix it!
Title: Структури алгебр диференціальних інваріантів в класичних sl_2 - геометріях
Other Titles: Стуктуры алгебр дифференциальных инвариантов в классических sl_2 - геометриях
Structures of differential invariants algebras for classical sl_2–geometries
Authors: Коновенко, Н. Г.
Keywords: різноманіття джетів
проективні структури
геометрія Лобачевського
геометричні величин
многообразия джетов
проективные структуры
геометрия Лобачевского
геометрические величины
manifolds of jets
projective structures
Lobachevski plane
geometrical quantities
Issue Date: 2010
Publisher: К.,Ін-т математики
Abstract: Дисертація на здобуття наукового ступеня кандидата фізико- математичних наук за спеціальністью 01.01.04 - геометрія та топологія. Дисертація присвячена локальному дослідженню геометрій на одновимірних й двувимірних многовидах із структурною алгеброю Лі sl_2(R). Для одновиміних sl_2(R) - геометрій встановлюється їх зв’язок із загальними проективними структурами на прямій і одновимірними рівняннями Шредінгера. Для цих геометрій приводиться повна класифікація проективних геометричних величин і описуються алгебри їх диференційних інваріантів. Ці результати використовуються для інтегрування у квадратурах рівнянь, що мають - симетрії. Для випадку двовимірних sl_2 - геометрій класифікуються локальні дії алгебри Лі sl_2(R) на площині і показується, що примітивним та транзитивним діям відповідають геометрії Лобачевського і де Сіттера. Для цих геометрій приведена класифікація геометричних величин і знайдені алгебри їх диференціальних інваріантів. Показано, що алгебра диференціальних інваріантів має пуассонову структуру. Ця структура використовується для опису алгебр диференціальних інваріантів у геометріях Лобачевського й де Сіттера.
Диссертация на соискание ученой степени кандидата физико- математических наук по специальности 01.01.04 - геометрия и топология. Диссертация посвящена локальному исследованию геометрий на одномерных и двумерных многообразиях со структурной алгеброй Ли sl_2(R). Мы приводим детальное описание проективных геометрических величин, которые затем используем для нахождения базисных дифференциальных инвариантов. Для всех типов проективных геометрических величин вычислены алгебры дифференциальных инвариантов. Полученные результаты, применены к построению новых классов нелинейных дифференциальных уравнений, обладающих sl_2 - симметрией, интегрируемых в квадратурах.Показано, что алгебра дифференциальных инвариантов обладает пуассоновой структурой. Эта структура используется для описания алгебр дифференциальных инвариантов в геометриях Лобачевского и де Ситтера. Результаты работы могут быть использованы как в дифференциальной геометрии, например в проблемах классификации различных геометрических величин: тензоров, дифференциальных форм, дифференциальных операторов, а также в приложениях математической физики и дифференциальных уравнениях. Найденные классы дифференциальных уравнений, а также методы их интегрирования могут быть использованы в разнообразных приложениях.
A dissertation for the scientific degree of the candidate of physical and mathematical science by speciality 01.01.04 -geometry and topology. I The dissertation is devoted to local investigation of geometries on one and twodimensional manifolds equipped with sl_2(R)-action. We classify actions of two-dimensional solvable Lie algebras on a line, and liftings of these actions to bundles of affine geometrical quantities. We use this classification to find basic differential invariants of affine geometrical quantities and todescribe the algebra of all affine differential invariants. These results allow us to find classes of the ordinary differential equations which can be integrated in quadratures. For the case of two-dimensional sl_2-geometries we classify local sl_2(R)-actions on the and shown that to primitive and transitive actions correspond to the Lobachevsky’s and de Sitter’s geometry. We give a classification of geometrical quantities and find the basic differential invariants. The complete description of differential invariants is based on construction of two sl_2-invariant bilinear brackets. One of which produces a poisson structure on the differential invariants algebra.This structure is used for the description of differential invariants algebras Lobachevsky’s and de Sitter’s geometry. Results of the dissertation can be used in differential geometry for classification of various geometrical quantities such as tensors, differential forms, differential operators, and in applications to mathematical physics and differential equations.
Description: Коновенко, Н. Г. Структури алгебр диференціальних інваріантів у класичних sl_2- геометріях : автореф. дис. ... канд. фіз.-мат. наук : спец. 01.01.04 "Геометрія та топологія" /Надія Григорівна Коновенко ; наук. кер. В. В. Личагін ; НАН України, Ін-т математики, [Одес. нац. акад. харч. технологій]. – Київ, 2010. – 18 с.
URI: https://card-file.onaft.edu.ua/handle/123456789/2482
Appears in Collections:Автореферати дисертацій (Abstracts)

Files in This Item:
File Description SizeFormat 
konovenko.pdf185.89 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.